Limits up to the Limit -1!

Calculus Level 4

lim n [ tan ( x 2 ) sec ( x ) + tan ( x 2 2 ) sec ( x 2 ) + tan ( x 2 3 ) sec ( x 2 2 ) + + tan ( x 2 n ) sec ( x 2 n 1 ) ] \lim_{n\to\infty} \left[ \tan \left( \frac x2 \right ) \sec(x) + \tan \left( \frac x{2^2} \right) \sec \left( \frac x2 \right) + \tan\left( \frac x{2^3} \right) \sec \left( \frac x {2^2} \right) +\ldots + \tan \left( \frac x {2^n} \right) \sec \left( \frac x {2^{n-1}} \right) \right ]

Let f ( x ) f(x) denote the limit above. Find the value of f ( π 4 ) f\left ( \frac \pi 4 \right) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2018

f ( x ) = lim n ( tan x 2 sec x + tan x 2 2 sec x 2 + tan x 2 3 sec x 2 2 + + tan x 2 n sec x 2 n 1 ) = lim n k = 1 n tan x 2 k sec x 2 n 1 Let t = tan x 2 k = lim n k = 1 n t 1 + t 2 1 t 2 = lim n k = 1 n t 2 ( 1 t 2 ) 1 t 2 = lim n k = 1 n ( 2 t 1 t 2 t ) Then cos x 2 k 1 = 1 t 2 1 + t 2 = lim n k = 1 n ( tan x 2 k 1 tan x 2 k ) = lim n ( tan x tan 1 2 n ) = tan x \begin{aligned} f(x) & = \lim_{n \to \infty} \left( \tan \frac x2 \sec x + \tan \frac x{2^2} \sec \frac x2 + \tan \frac x{2^3} \sec \frac x{2^2} + \cdots + \tan \frac x{2^n} \sec \frac x{2^{n-1}} \right) \\ & = \lim_{n \to \infty} \sum_{k=1}^n \tan \frac x{2^k} \sec \frac x{2^{n-1}} & \small \color{#3D99F6} \text{Let }t = \tan \frac x{2^k} \\ & = \lim_{n \to \infty} \sum_{k=1}^n t \cdot \frac {1+t^2}{1-t^2} = \lim_{n \to \infty} \sum_{k=1}^n t \cdot \frac {2-(1-t^2)}{1-t^2} = \lim_{n \to \infty} \sum_{k=1}^n \left( \frac {2t}{1-t^2} - t\right) & \small \color{#3D99F6} \text{Then }\cos \frac x{2^{k-1}} = \frac {1-t^2}{1+t^2} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \left(\tan \frac x{2^{k-1}} - \tan \frac x{2^k} \right) = \lim_{n \to \infty} \left(\tan x - \tan \frac 1{2^n}\right) \\ & = \tan x \end{aligned}

Therefore, f ( π 4 ) = tan π 4 = 1 f\left(\frac \pi 4\right) = \tan \frac \pi 4 = \boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...