Limits with cosine

Calculus Level 3

lim x 0 1 cos x cos 2 x cos 3 x sin 2 2 x = ? \lim_{x\to0} \dfrac{1 - \cos x \cos 2x \cos 3x}{\sin^2 2x } = \, ?

7 4 \frac{7}{4} 3 4 \frac{3}{4} 8 5 \frac{8}{5} 1 0 2 3 \frac{2}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Van Lier
Mar 28, 2016

We can rewrite the numerator as:

1 c o s ( x ) c o s ( 2 x ) c o s ( 3 x ) = 1 - cos(x) cos(2x) cos(3x) = 1 1 2 c o s ( 2 x ) . ( c o s ( 4 x ) + c o s ( 2 x ) ) = 1 - \frac{1}{2} cos(2x) . (cos(4x) + cos(2x)) = 1 2 . [ 1 + 1 c o s 2 ( 2 x ) c o s ( 2 x ) . c o s ( 4 x ) ] = \frac{1}{2} . [1 + 1 - cos^2(2x) - cos(2x).cos(4x)] = 1 2 . [ s i n 2 ( 2 x ) + 1 c o s 3 ( 2 x ) + c o s ( 2 x ) s i n 2 ( 2 x ) ] = \frac{1}{2} . [ sin^2(2x) + 1 - cos^3(2x) + cos(2x) sin^2(2x)] = 1 2 . [ s i n 2 ( 2 x ) + c o s ( 2 x ) s i n 2 ( 2 x ) + c o s ( 2 x ) . s i n 2 ( 2 x ) + 1 c o s ( 2 x ) ] = \frac{1}{2} . [ sin^2(2x) + cos(2x) sin^2(2x) + cos(2x).sin^2(2x) + 1 - cos(2x) ] = 1 2 . [ s i n 2 ( 2 x ) + 2. c o s ( 2 x ) . s i n 2 ( 2 x ) + 2. s i n 2 ( x ) ] . \frac{1}{2} . [ sin^2(2x) + 2.cos(2x).sin^2(2x) + 2.sin^2(x) ] . This means :

lim x 0 1 c o s ( x ) c o s ( 2 x ) c o s ( 3 x ) s i n 2 ( 2 x ) = \lim_{x \to 0} \dfrac{1 - cos(x) cos(2x) cos(3x) }{sin^2(2x)} = 1 2 . [ lim x 0 ( 1 ) + 2. lim x 0 ( c o s ( 2 x ) ) + 2. lim x 0 1 4 c o s 2 ( x ) ] = \frac{1}{2} . \bigg[ \lim_{x \to 0} (1) + 2.\lim_{x \to 0} (cos(2x)) + 2 . \lim_{x \to 0} \dfrac{1}{4cos^2(x)} \bigg] = 1 2 + 1 + 1 4 = 7 4 . \frac{1}{2} + 1 + \frac{1}{4} = \frac{7}{4}.

FYI you used the term "nominator" instead of "numerator". I've edited the solution accordingly.

Calvin Lin Staff - 5 years, 2 months ago

Log in to reply

Ok thanks, English isn't my native language :-)

Tom Van Lier - 5 years, 2 months ago
D S
Jan 15, 2018

We see sin^2(2x)= \frac{1-\cos{4x}}{2}

sub this in then limit falls apart using taylor series

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...