Limits 8

Calculus Level 3

Find lim x 0 1 2 sin 2 x cos 3 x 5 x 2 \displaystyle\lim_{x \rightarrow 0} \displaystyle\frac{1-2\sin^{2}x-\cos^{3} x}{5x^{2}}


The answer is -0.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmed Essam
Apr 8, 2015

Daniel Ferreira
Aug 1, 2015

lim x 0 1 2 sin 2 x cos 3 x 5 x 2 = lim x 0 1 2 ( 1 cos 2 x ) cos 3 x 5 x 2 = lim x 0 2 cos 2 x cos 3 x 1 5 x 2 = 0 0 ( indeterminate ) \\ \lim_{x \to 0} \frac{1 - 2 \cdot \sin^2 x - \cos^3 x}{5x^2} = \\\\\\ \lim_{x \to 0} \frac{1 - 2 \cdot (1 - \cos^2 x) - \cos^3 x}{5x^2} = \\\\\\ \lim_{x \to 0} \frac{2 \cdot \cos^2 x - \cos^3 x - 1}{5x^2} = \frac{0}{0} (\text{indeterminate})

Aplicando L'Hôspital,

lim x 0 4 cos x ( sin x ) 3 cos 2 x ( sin x ) 10 x = lim x 0 sin x ( 4 cos x + 3 cos 2 x ) 10 x = lim x 0 sin x x 4 cos x + 3 cos 2 x 10 \\ \lim_{x \to 0} \frac{4 \cdot \cos x \cdot (- \sin x) - 3\cos^2 x \cdot (- \sin x)}{10x} = \\\\\\ \lim_{x \to 0} \frac{\sin x \cdot (- 4 \cdot \cos x + 3 \cdot \cos^2 x)}{10x} = \\\\\\ \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{- 4 \cdot \cos x + 3 \cdot \cos^2 x}{10}

Do limite fundamental trigonométrico,

1 4 1 + 3 1 10 = 1 10 \\ 1 \cdot \frac{- 4 \cdot 1 + 3 \cdot 1}{10} = \\\\\\ \boxed{\boxed{- \frac{1}{10}}}

okay i did it differently and got a wrong answer but i don't know why. So what i did is a broke 1-cos^3x and did difference of cubes. Then i used the identity that (1-cosx)/x=0 so that whole part became zero. That left me with -2sin^2x/5x^2 and i used the identity sinx/x=1 to get -.4

Ashish Sacheti - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...