Line Integral (4-3-2020)

Calculus Level pending

Consider a vector field F = ( F x , F y , F z ) \vec{F} = (F_x, F_y, F_z) .

F x = 3 x 2 y + 3 z 5 x 2 F y = x 3 + 4 y 3 z 2 F z = 2 y 4 z + 5 z 4 x 3 F_x = 3 x^2 y + 3 z^5 x^2 \\ F_y = x^3 + 4 y^3 z^2 \\ F_z = 2 y^4 z + 5 z^4 x^3

Determine the line integral of the vector field over a straight-line path from ( x 1 , y 1 , z 1 ) = ( 0 , 0 , 0 ) (x_1, y_1, z_1) = (0,0,0) to ( x 2 , y 2 , z 2 ) = ( 1 , 2 , 3 ) (x_2, y_2, z_2) = (1,2,3) .

C F d \large{\int_C \vec{F} \cdot \vec{d \ell}}


The answer is 389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Apr 3, 2020

F = ( 3 x 2 y + 3 z 5 x 2 ) i ^ + ( x 3 + 4 y 3 z 2 ) j ^ + ( 2 y 4 z + 5 z 4 x 3 ) k ^ ; d l = d x i ^ + d y j ^ + d z k ^ \red{\vec{F} = \left(3x^2y+3z^5x^2\right)\hat{i} + \left(x^3+4y^3z^2\right)\hat{j} + \left(2y^4z+5z^4x^3\right) \hat{k}} \ ; \ \blue{d\vec{l} = dx \ \hat{i} + dy \ \hat{j} + dz \ \hat{k}} F d l = ( 3 x 2 y + 3 z 5 x 2 ) d x + ( x 3 + 4 y 3 z 2 ) d y + ( 2 y 4 z + 5 z 4 x 3 ) d z = d ( x 3 y + x 3 z 5 + y 4 z 2 ) \implies \vec{F} \cdot d\vec{l} = \left(3x^2y+3z^5x^2\right)dx +\left(x^3+4y^3z^2\right) dy + \left(2y^4z+5z^4x^3\right)dz = d\left(x ^3y+x^3z^5+ y^4z^2 \right)

The following integral is to be computed between points ( 0 , 0 , 0 ) (0,0,0) and ( 1 , 2 , 3 ) (1,2,3) along the line joining them. Since the dot product is an exact differential, the answer is path independent.

F d l = i n i t i a l f i n a l d ( x 3 y + x 3 z 5 + y 4 z 2 ) \vec{F} \cdot d\vec{l} =\int_{\mathrm{initial}}^{\mathrm{final}} d\left(x ^3y+x^3z^5+ y^4z^2 \right)

Let: x 3 y + x 3 z 5 + y 4 z 2 = t x ^3y+x^3z^5+ y^4z^2 = t . Recomputing the limits and applying the substitution transforms the integral to:

0 389 d t = 389 \boxed{\int_{0}^{389} dt = 389}

Aaghaz Mahajan
Apr 4, 2020

First, find the curl of the vector field. It comes out to be 0 0 . Hence, the field is conservative.

The potential function comes out to be f ( x , y , z ) = x 3 y + y 4 z 2 + z 5 x 3 f\left(x,y,z\right)=x^{3}y+y^{4}z^{2}+z^{5}x^{3}

Hence the line integral is simply f ( 1 , 2 , 3 ) f ( 0 , 0 , 0 ) = 389 f\left(1,2,3\right)-f\left(0,0,0\right)\ =\ 389

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...