Line integral

Calculus Level 3

Let C C be the arc of the parabola x = 4 y 2 x = 4-y^2 between the points ( 5 , 3 ) (-5,-3) and ( 0 , 2 ) (0,2) . What is the value of

N = C ( y 2 d x + x d y ) ? N = \int_C \big(y^2\ dx + x\ dy\big) ?


The answer is 40.8333333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Using y y as a parameter, we have x = 4 y 2 x = 4 - y^2 , d x = 2 y d y dx = -2y\ dy in the domain 3 y 2 -3 \leq y \leq 2 . Substituting this in, we have

N = C ( y 2 d x + x d y ) = 3 2 ( y 2 ( 2 y d y ) + ( 4 y 2 ) d y ) = 3 2 ( 2 y 3 y 2 + 4 ) d y = [ y 4 2 y 3 3 + 4 y ] 3 2 = ( 16 2 8 3 + 8 ) ( 81 2 + 27 3 12 ) = 245 6 \begin{aligned} N &= \int_C (y^2\ dx + x\ dy) \\ &= \int_{-3}^2 (y^2(-2y\ dy) + (4-y^2)\ dy) \\ &= \int_{-3}^2 (-2y^3 -y^2 + 4)\ dy \\ &= \left[-\frac{y^4}{2}-\frac{y^3}{3} + 4y \right]_{-3}^2 \\ &= \left(-\frac{16}{2} -\frac{8}{3} + 8 \right) -\left(-\frac{81}{2} + \frac{27}{3} - 12 \right) \\ &= \frac{245}{6} \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...