Linear Manipulating

Algebra Level 3

Given that a , b a,b and c c are non-zero numbers that satisfy the system of equations below.

{ a 10 b = 0 c + b = 2 10 a c c = 20 \begin{cases} a-10b = 0 \\ c+b=2 \\ 10ac- c = 20 \\ \end{cases}

Find the value of 1 a + 1 b + 1 c \dfrac 1a + \dfrac 1b + \dfrac 1c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Since a 10 b = 0 a b = 10 a - 10b = 0 \Rightarrow \frac{a}{b} = 10

Also, c + b = 2 c+b = 2 and 10 a c c = 20 10ac-c = 20

10 a c c c + b = 10 \Rightarrow \frac{10ac-c}{c+b} = 10

10 a c c c + b = a b \Rightarrow \frac{10ac-c}{c+b} = \frac{a}{b}

10 a b c = a c + b c + a b \Rightarrow 10abc = ac + bc + ab

1 a + 1 b + 1 c = 10 \Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 10

Alex Delhumeau
May 12, 2015

1 a + 1 b + 1 c \large{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} = b + c b c + 1 a \large{\frac{b+c}{bc}+\frac{1}{a}} .

From the given, b + c = 2 b+c=2 and a = 10 b a=10b , so b + c b c + 1 a \large{\frac{b+c}{bc}+\frac{1}{a}} = 2 b c + 1 10 b \large{\frac{2}{bc}+\frac{1}{10b}} .

By common denominator, 2 b c + 1 10 b \large{\frac{2}{bc}+\frac{1}{10b}} = 20 + c 10 b c \large{\frac{20+c}{10bc}} .

Substituting in 10 b = a 10b=a and 20 + c = 10 a c 20+c=10ac , 20 + c 10 b c \large{\frac{20+c}{10bc}} = 10 a c a c = 10 \large{\frac{10ac}{ac}=\boxed{10}} .

Noel Lo
May 17, 2015

10 a c c = 20 10ac - c = 20 so that 10 a 1 = 20 c 10a - 1 = \frac{20}{c} and a = 10 b a = 10b which means 1 a = 1 10 b \frac{1}{a} = \frac{1}{10b} . Multiply the 2 equations we get ( 10 a 1 ) ( 1 a ) = 20 c 1 10 b (10a-1)(\frac{1}{a}) = \frac{20}{c} \frac{1}{10b} or 10 1 a = 2 b c 10 - \frac{1}{a} = \frac{2}{bc} . Since c + b = 2 c+b = 2 , 1 b + 1 c = 2 b c \frac{1}{b} + \frac{1}{c} = \frac{2}{bc} so we have 1 b + 1 c = 10 1 a \frac{1}{b} + \frac{1}{c} = 10 - \frac{1}{a} therefore 1 a + 1 b + 1 c = 10 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \boxed{10} .

Chenyang Sun
May 12, 2015

Just another trick question... Trick being 10ac=20+c .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...