Lucky money new year

( u n ) : { u 0 = 1 u 1 = 3 , n 1 u n 5 u n 1 + 6 u n 2 = 2 n 2 + 2 n + 1 \large (u_{n}): \begin{cases} u_{0}=-1 \\ u_{1}=3, \quad \forall n\geq 1 & \\ u_{n}-5u_{n-1}+6u_{n-2}=2n^{2}+2n+1 & \end{cases}

Consider the recurrence relation above.

If u n u_{n} can be expressed as u n = a b n + c d n + e n k + f n l + g u_{n}=ab^n +cd^n +en^k +fn^l +g , type your answer as a + b + c + d + e + f + g + k + l a+b+c+d+e+f+g+k+l


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Feb 5, 2017

m a x i m u m p o w e r o f n i s 2 i n u n 5 u n 1 + u n 2 { k , l } = { 2 , 1 } u n 5 u n 1 + u n 2 = 2 n 2 + 2 n + 1 = a b n 2 ( b 2 5 b + 6 ) + c d n 2 ( d 2 5 d + 6 ) + e [ n 2 5 ( n 1 ) 2 + 6 ( n 2 ) 2 ] + f [ n 5 ( n 1 ) + 6 ( n 2 ) ] + ( g 5 g + 6 g ) = a b n 2 ( b 2 5 b + 6 ) + c d n 2 ( d 2 5 d + 6 ) + e ( 2 n 2 14 n + 19 ) + f ( 2 n 7 ) + 2 g c o m p a r e c o e f f i c i e n t s o f n , ( b 2 5 b + 6 ) = ( d 2 5 d + 6 ) = 0 ; { b , d } = { 3 , 2 } 2 e = 2 , 14 e + 2 f = 2 , 19 e 7 f + 2 g = 1 e = 1 , f = 8 , g = 19 p u t t h e s e v a l u e s i n g i v e n e q u a t i o n s , u 0 = a + c + 19 = 1 ; u 1 = 3 a + 2 c + 28 = 3 a = 15 , c = 35 A n s = a + b + c + d + e + f + g + k + l = 15 + 3 35 + 2 + 1 + 8 + 19 + 2 + 1 = 16 maximum\quad power\quad of\quad n\quad is\quad 2\quad in\quad { u }_{ n }-5{ u }_{ n-1 }+{ u }_{ n-2 }\quad \Rightarrow \left\{ k,l \right\} =\left\{ 2,1 \right\} \\ \\ { u }_{ n }-5{ u }_{ n-1 }+{ u }_{ n-2 }=2{ n }^{ 2 }+2n+1\\ \\ =a{ b }^{ n-2 }\left( { b }^{ 2 }-5b+6 \right) +c{ d }^{ n-2 }\left( { d }^{ 2 }-5d+6 \right) +e\left[ { n }^{ 2 }-5{ \left( n-1 \right) }^{ 2 }+6{ \left( n-2 \right) }^{ 2 } \right] \\ \\ +f\left[ n-5\left( n-1 \right) +6\left( n-2 \right) \right] +\left( g-5g+6g \right) \\ \\ =a{ b }^{ n-2 }\left( { b }^{ 2 }-5b+6 \right) +c{ d }^{ n-2 }\left( { d }^{ 2 }-5d+6 \right) +e\left( 2{ n }^{ 2 }-14n+19 \right) +f\left( 2n-7 \right) +2g\\ \\ compare\quad coefficients\quad of\quad n,\\ \\ \left( { b }^{ 2 }-5b+6 \right) =\left( { d }^{ 2 }-5d+6 \right) =0;\quad \Rightarrow \left\{ b,d \right\} =\left\{ 3,2 \right\} \\ \\ 2e=2,\quad -14e+2f=2,\quad 19e-7f+2g=1\quad \Rightarrow e=1,\quad f=8,\quad g=19\\ \\ put\quad these\quad values\quad in\quad given\quad equations,\\ \\ { u }_{ 0 }=a+c+19=-1;\quad { u }_{ 1 }=3a+2c+28=3\\ \\ \Rightarrow a=15,\quad c=-35\\ \\ \Rightarrow Ans=a+b+c+d+e+f+g+k+l=15+3-35+2+1+8+19+2+1=16

Thanks. I have edited the -l to +l, and updated the answer accordingly.

Calvin Lin Staff - 4 years, 3 months ago

Relevant wiki: Linear Recurrence Relations - Problem Solving

u n = n ( n + 8 ) 35. 2 n + 5. 3 n + 1 + 19 u_n = n (n + 8) - 35 .2^n + 5 .3^{n + 1} + 19

To see how to solve a recurrence relation, see this .For the solution itself, it is just the same as this but see the 1st link or else the second will overwhelm you

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...