Moving Along A Linear Function

Algebra Level 1

If f f is a linear function such that f ( 2013 ) f ( 2001 ) = 100 f(2013) - f(2001) = 100 , then what is f ( 2031 ) f ( 2013 ) f(2031) - f(2013) ?

50 85 130 150

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Mar 30, 2016

Let the linear function is f ( x ) = a x + b f(x)=ax+b , so we have

f ( 2013 ) f ( 2001 ) = 12 a = 100 f(2013)-f(2001)=12a=100

a = 100 12 a=\frac{100}{12}

Now, f ( 2031 ) f ( 2013 ) = 18 a = 150 f(2031)-f(2013)=18a=150

(This an answer that goes along with an understanding of Straight lines, rather than linear function) It is mentioned, the F(), is a liner function, which basically means, its a straight line when plotted o a graph.

So, crucially, the slope is constant at all points of this slope.

H e r e , w e w i l l a s s u m e y 1 = f ( 2001 ) a n d y 2 = f ( 2013 ) A l s o , x 1 = 2001 a n d x 2 = 2013 f ( 2013 ) f ( 2001 ) = 100 y 2 y 1 = 100 N o w , t o t h e s l o p e f o r m u l a y 2 y 1 x 2 x 1 = s l o p e 100 2013 2001 = s l o p e 100 12 = s l o p e . N o w , t h e s e c o n d h a l f o f t h e q u e s t i o n , y 1 = f ( 2013 ) a n d y 2 = f ( 2031 ) y 2 y 1 x 2 x 1 = s l o p e y 2 y 1 2031 2013 = 100 12 y 2 y 1 6 = 25 1 y 2 y 1 1 = 25 × 6 1 y 2 y 1 = 150 f ( 2031 ) f ( 2013 ) = 150 Here,\quad we\quad will\quad assume\quad { y }_{ 1 }=f\left( 2001 \right) \quad and\quad { y }_{ 2 }=f\left( 2013 \right) \\ \\ Also,\quad { x }_{ 1 }=2001\quad and\quad { x }_{ 2 }=2013\\ \\ \\ f\left( 2013 \right) -f\left( 2001 \right) =100\\ \\ { y }_{ 2 }-{ y }_{ 1 }=100\\ \\ Now,\quad to\quad the\quad slope\quad formula\\ \\ \frac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } } =slope\\ \\ \frac { 100 }{ 2013-2001 } =slope\\ \\ \frac { 100 }{ 12 } =slope.\\ \\ Now,\quad the\quad second\quad half\quad of\quad the\quad question,\quad \\ { y }_{ 1 }=f\left( 2013 \right) \quad and\quad { y }_{ 2 }=f\left( 2031 \right) \\ \\ \frac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } } =slope\\ \\ \frac { { y }_{ 2 }-{ y }_{ 1 } }{ 2031-2013 } =\frac { 100 }{ 12 } \\ \\ \frac { { y }_{ 2 }-{ y }_{ 1 } }{ 6 } =\frac { 25 }{ 1 } \\ \\ \frac { { y }_{ 2 }-{ y }_{ 1 } }{ 1 } =\frac { 25\quad \times \quad 6 }{ 1 } \\ \\ { y }_{ 2 }-{ y }_{ 1 }\quad =\quad 150\\ \\ f\left( 2031 \right) -f\left( 2013 \right) =150\\ \\ \\ \\

hehe I solved this problem rather informally lol.

Since it's a linear function, I know the values are changing constantly, so from 2001 to 2013 the range is 12 with a difference of 100. The range from 2013 to 2031 is 18. So I know that the difference of two f(x)'s with the difference of the x values of 12 is 100, then 18-12 = 6. 6 is half 12 so 100 + 50= 150

What do you guys think of my method? Will it always work?

Nataly Carbonell - 5 years, 2 months ago

Log in to reply

Hehehe...what you have done, follows the same principle. You have done it with an intuitive understanding, and I have expressed it mathematically. =)

Yashwanth Manivannan - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...