Linear System of Differential Equations - 4

Calculus Level 3

Variables x 1 x_1 , x 2 x_2 , and u u are functions of time t t satisfying the system of equations below:

{ x ˙ 1 = 3 x 1 x 2 + u x ˙ 2 = 5 x 1 x 2 u = k 1 x 1 + k 2 x 2 \begin{cases} \dot{x}_1 = 3x_1 - x_2 + u \\ \dot{x}_2 = 5x_1 - x_2 \\ u = k_1x_1 + k_2x_2 \end{cases}

where x ˙ \dot x denotes the derivative of x x with respect to t t , and k 1 k_1 and k 2 k_2 are constants. Let the general solution of the system be

{ x 1 = c 1 e 4 t + c 2 e 3 t x 2 = c 3 e 4 t + c 4 e 3 t \begin{cases} x_1 = c_1 e^{-4t} + c_2 e^{-3t} \\ x_2 = c_3 e^{-4t} + c_4 e^{-3t} \end{cases}

where c 1 c_1 , c 2 c_2 , c 3 c_3 , and c 4 c_4 are arbitrary real constants. What are the values of k 1 k_1 and k 2 k_2 ? Enter your answer as 5 ( k 1 + k 2 ) 5(k_1 + k_2)

Bonus: Refer to the previous version of this problem. What comments can be made from an energy standpoint?


The answer is -46.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Krishna Karthik
Apr 26, 2020

This lecture by MIT professor Gilbert Strang is the most relevant for this problem. The lecture videos by Strang are very helpful! System of linear differential equations

Let the system of equations be represented as: d v d t = A v \displaystyle \frac{d \vec{\bold{v}}}{dt} = \bold{A}\vec{\bold{v}} ,

Where A \bold{A} is the coefficient matrix of the system and v \vec{\bold{v}} is the vector [ x 1 x 2 ] \displaystyle \begin{bmatrix} x_{1} \\ x_{2} \\ \end{bmatrix} .

The system is:

5 x 1 1 x 2 = d x 1 d t \displaystyle 5x_1 - 1x_2 = \frac{dx_1}{dt}

( 3 + k 1 ) x 1 + ( k 2 1 ) x 2 = d x 2 d t \displaystyle (3+k_1)x_1 + (k_2 - 1)x_2 = \frac{dx_2}{dt}

The coefficient matrix A \bold{A} is:

[ 5 1 3 + k 1 k 2 1 ] \begin{bmatrix} 5 & -1 \\ 3+k_1 & k_2 -1 \end{bmatrix}

Therefore the system as a linear transformation is:

[ 5 1 3 + k 1 k 2 1 ] \begin{bmatrix} 5 & -1 \\ 3+k_1 & k_2 -1 \end{bmatrix} [ x 1 x 2 ] \displaystyle \begin{bmatrix} x_{1} \\ x_{2} \\ \end{bmatrix} = d v d t \displaystyle \frac{d \vec{\bold{v}}}{dt}

The general solution of v \bold{\vec{v}} is:

v = c 1 e λ 1 t e 1 + c 2 e λ 2 t e 2 \displaystyle \bold{\vec{v}} = c_1 e^{\lambda _{1} t} \vec{\bold{e}_1} + c_2 e^{\lambda _{2} t } \vec{\bold{e}_2} ,

where λ 1 \lambda_1 and λ 2 \lambda_2 are the eigenvalues, and e 1 \vec{\bold{e}}_1 and e 2 \vec{\bold{e}}_2 are the eigenvectors of the system coefficient matrix.

Therefore, when solving det ( A λ I ) = 0 \det(\bold{A} - \lambda \bold{I}) = 0 , we get:

λ 1 = 4 = 2 + k 1 ( 2 + k 1 ) 2 8 + 4 k 1 + 20 k 2 2 \displaystyle \lambda _{1} = -4 = \frac{2+k_1 - \sqrt{(2+k_1)^2 - 8 +4k_1 +20k_2}}{2}

λ 2 = 3 = 2 + k 1 + ( 2 + k 1 ) 2 8 + 4 k 1 + 20 k 2 2 \displaystyle \lambda _{2} = -3 = \frac{2+k_1 + \sqrt{(2+k_1)^2 - 8 +4k_1 +20k_2}}{2}

Solving the simultaneous equation for k 1 k_1 and k 2 k_2 , we get k 1 = 9 \boxed{k_1 = -9} and k 2 = 1 5 \displaystyle \boxed{k_2 = - \frac{1}{5}}

Thanks for the solution

Karan Chatrath - 1 year, 1 month ago

Log in to reply

Thanks; it was a fun problem. I used it to revise and practice Linear Algebra. During quarantine there's a lot of spare time as school isn't very frequent; I try to do maths in the spare time.

Krishna Karthik - 1 year, 1 month ago
Steven Chase
Sep 15, 2019

With the forcing function, the system matrix becomes:

( 3 + k 1 1 + k 2 5 1 ) \begin{pmatrix} 3 + k_1 & -1 + k_2 \\ 5 & -1 \end{pmatrix}

We need the matrix to have eigenvalues of 4 -4 and 3 -3 . To solve for the eigenvalues, set the determinant of the following matrix to zero:

( 3 + k 1 λ 1 + k 2 5 1 λ ) \begin{pmatrix} 3 + k_1 - \lambda & -1 + k_2 \\ 5 & -1 - \lambda \end{pmatrix}

This yields:

λ 2 + λ ( 2 k 1 ) + 2 k 1 5 k 2 = 0 \lambda^2 + \lambda (-2 - k_1) + 2 - k_1 - 5 k_2 = 0

The system of equations to solve becomes:

λ 1 = 4 = 2 + k 1 ( 2 + k 1 ) 2 8 + 4 k 1 + 20 k 2 2 λ 2 = 3 = 2 + k 1 + ( 2 + k 1 ) 2 8 + 4 k 1 + 20 k 2 2 \lambda_1 = -4 = \frac{2 + k_1 - \sqrt{(2 + k_1)^2 - 8 + 4 k_1 + 20 k_2}}{2} \\ \lambda_2 = -3 = \frac{2 + k_1 + \sqrt{(2 + k_1)^2 - 8 + 4 k_1 + 20 k_2}}{2}

Solving yields:

k 1 = 9 k 2 = 1 5 k_1 = - 9 \\ k_2 = -\frac{1}{5}

Because the solutions consist of decaying exponentials, the energy of the system decreases over time.

Chew-Seong Cheong
Sep 15, 2019

Given that

{ x ˙ 1 = ( k 1 + 3 ) x 1 + ( k 2 1 ) x 2 . . . ( 1 ) x ˙ 2 = 5 x 1 x 2 . . . ( 2 ) x 1 = c 1 e 4 t + c 2 e 3 t . . . ( 3 ) x 2 = c 3 e 4 t + c 4 e 3 t . . . ( 4 ) \begin{cases} \dot x_1 = (k_1+3)x_1 + (k_2-1)x_2 & ...(1) \\ \dot x_2 = 5x_1 - x_2 & ...(2) \\ x_1 = c_1 e^{-4t} + c_2 e^{-3t} & ...(3) \\ x_2 = c_3 e^{-4t} + c_4 e^{-3t} & ...(4) \end{cases}

Substitute ( 3 ) (3) and ( 4 ) (4) in ( 1 ) (1) and ( 2 ) (2) and differentiate ( 3 ) (3) and ( 4 ) (4) with respect to t t .

{ x ˙ 1 = ( k 1 c 1 + k 2 c 3 + 3 c 1 c 3 ) e 4 t + ( k 1 c 2 + k 2 c 4 + 3 c 2 c 4 ) e 3 t . . . ( 1 a ) x ˙ 2 = ( 5 c 1 c 3 ) e 4 t + ( 5 c 2 c 4 ) e 3 t . . . ( 2 a ) x ˙ 1 = 4 c 1 e 4 t 3 c 2 e 3 t . . . ( 3 a ) x ˙ 2 = 4 c 3 e 4 t 3 c 4 e 3 t . . . ( 4 a ) \begin{cases} \dot x_1 = (k_1c_1+k_2c_3+3c_1-c_3)e^{-4t} + (k_1c_2+k_2c_4+3c_2-c_4)e^{-3t} & ...(1a) \\ \dot x_2 = (5c_1-c_3)e^{-4t} + (5c_2-c_4)e^{-3t} & ...(2a) \\ \dot x_1 = -4c_1 e^{-4t} -3 c_2 e^{-3t} & ...(3a) \\ \dot x_2 = -4 c_3 e^{-4t} -3 c_4 e^{-3t} & ...(4a) \end{cases}

From ( 2 a ) = ( 4 a ) (2a) = (4a) , { 5 c 1 c 3 = 4 c 3 c 1 = 3 5 c 3 5 c 2 c 4 = 3 c 3 c 2 = 2 5 c 4 \implies \begin{cases} 5c_1-c_3 = -4 c_3 & \implies c_1 = - \frac 35 c_3 \\ 5c_2-c_4 = -3 c_3 & \implies c_2 = - \frac 25 c_4 \end{cases}

From ( 1 a ) = ( 3 a ) (1a) = (3a) :

k 1 c 1 + k 2 c 3 + 3 c 1 c 3 = 4 c 1 Since c 1 = 3 5 c 3 3 5 k 1 + k 2 9 5 1 = 12 5 3 k 1 + 5 k 2 = 26 . . . ( 5 ) \begin{aligned} k_1c_1+k_2c_3+3c_1-c_3 & = - 4c_1 & \small \color{#3D99F6} \text{Since }c_1 = - \frac 35 c_3 \\ - \frac 35 k_1 + k_2 - \frac 95 - 1 & = \frac {12}5 \\ \implies - 3k_1 + 5k_2 & = 26 \quad ...(5) \end{aligned}

k 1 c 2 + k 2 c 4 + 3 c 2 c 4 = 3 c 2 Since c 2 = 2 5 c 4 2 5 k 1 + k 2 6 5 1 = 6 5 2 k 1 + 5 k 2 = 17 . . . ( 6 ) \begin{aligned} k_1c_2+k_2c_4+3c_2-c_4 & = - 3c_2 & \small \color{#3D99F6} \text{Since }c_2 = - \frac 25 c_4 \\ - \frac 25 k_1 + k_2 - \frac 65 - 1 & = \frac 65 \\ \implies - 2k_1 + 5k_2 & = 17 \quad ...(6) \end{aligned}

From ( 6 ) ( 5 ) : k 1 = 9 (6)-(5): \ k_1 = - 9 . From ( 6 ) : k 2 = 1 5 (6): \ k_2 = - \frac 15 . Therefore, 5 ( k 1 + k 2 ) = 5 ( 9 1 5 ) = 46 5(k_1+k_2) = 5 \left(-9 - \frac 15\right) = \boxed {-46} .

Very nice solution. Thank you for sharing

Karan Chatrath - 1 year, 8 months ago

Log in to reply

Glad that you like the solution. I have changed the wording of the problem for you. Check my answer to your previous problem.

Chew-Seong Cheong - 1 year, 8 months ago

Log in to reply

Yes, I noticed the changes. Also upvoted the other solution that you have posted. Thank you

Karan Chatrath - 1 year, 8 months ago

Very clever; it's interesting as there was no requirement for previous Linear Algebra knowledge for you solution. Your solution is quite unique. Clever indeed!

Krishna Karthik - 1 year, 1 month ago

Log in to reply

Glad that you like the solution

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...