Lines upon Numbers

The 4-digit integer w x y z \overline{wxyz} can be written as a 3 w + b 2 x + c y + d z a^3 w + b^2x + cy + dz .

If a b c + b c d + a b d + a c d + a b c d + 2 a + 3 b + 4 c + 5 d + a 2 + b 2 + c 2 + d 2 abc + bcd + abd + acd + abcd + 2a + 3b + 4c + 5d + a^2 + b^2 + c^2 + d^2 is equal to another 4-digit integer k l m n \overline{klmn} , what is the value of k 2 + l 2 + m 2 + n 2 + 2 k + 2 l + 2 m + 2 n + k l m n k^2 + l^2 + m^2 + n^2 + 2k + 2l + 2m + 2n + klmn ?

Try another problem on my set! Let's Practice


The answer is 851.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that w x y z = 1000 w + 100 x + 10 y + z = a 3 w + b 2 x + c y + d z \overline{wxyz} = 1000w + 100x + 10y + z = a^3w + b^2x + cy + dz

That means, a 3 = 1000 a^3=1000 , b 2 = 100 b^2=100 , c = 10 c=10 , d = 1 d=1

a = 10 , b = 10 , c = 10 , d = 1 a=10, b=10, c=10, d=1

Now, a b c + b c d + a b d + a c d + a b c d + 2 a + 3 b + 4 c + 5 d + a 2 + b 2 + c 2 + d 2 abc + bcd + abd + acd + abcd + 2a + 3b + 4c + 5d + a^2 + b^2 + c^2 + d^2

= 1000 + 100 + 100 + 100 + 1000 + 20 + 30 + 40 + 5 + 100 + 100 + 100 + 1 = 1000 + 100 + 100 + 100 + 1000 + 20 + 30 + 40 + 5 + 100+100+100+1

= 2696 = k l m n =2696 = \overline{klmn}

k = 2 , l = 6 , m = 9 , n = 6 k=2, l=6, m=9, n=6 .

k 2 + l 2 + m 2 + n 2 + 2 k + 2 l + 2 m + 2 n + k l m n = 4 + 36 + 81 + 36 + 4 + 12 + 18 + 12 + ( 2 × 6 × 9 × 6 ) k^2 + l^2 + m^2 + n^2 + 2k + 2l + 2m + 2n + klmn = 4+36+81+36+4+12+18+12+ (2 \times 6 \times 9 \times 6)

= 851 = \boxed{851}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...