Little Cryptogram

Logic Level 3

Z Y X Y X + Z X X Z Y \Large \begin{array} {c c c c c c} & \color{#3D99F6}{Z}& \color{#69047E}{Y}& \color{#D61F06}{X} \\ & & \color{#69047E}{Y} & \color{#D61F06}{X} \\ + & & \color{#3D99F6}{Z} & \color{#D61F06}{X} \\ \hline & \color{#D61F06}{X} & \color{#3D99F6}{Z} & \color{#69047E}{Y} \\ \end{array} X , Y , Z \color{#D61F06}X,\color{#69047E}Y,\color{#3D99F6}Z are distinct and nonzero.What is X + Y + Z ? \color{#D61F06}X+\color{#69047E}Y+\color{#3D99F6}Z?


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X X
May 18, 2018

We can start from simplifying the cryptogram. Z Y X Y X + 0 X X 0 Y \Large \begin{array} {c c c c c c} & \color{#3D99F6}{Z}& \color{#69047E}{Y}& \color{#D61F06}{X} \\ & & \color{#69047E}{Y} & \color{#D61F06}{X} \\ + & & 0 & \color{#D61F06}{X} \\ \hline\\ \hline & \color{#D61F06}{X} & 0 & \color{#69047E}{Y} \\ \end{array} We can get Y = 4 {\color{#69047E}{Y}}=4 or 5 5 .Consider the column X + X + X = Y {\color{#D61F06}{X}}+{\color{#D61F06}{X}}+{\color{#D61F06}{X}}={\color{#69047E}{Y}}

If Y = 4 , X = 8 {\color{#69047E}{Y}}=4,{\color{#D61F06}{X}}=8 ,this fits.

If Y = 5 , X = 5 {\color{#69047E}{Y}}=5,{\color{#D61F06}{X}}=5 ,but Y , X {\color{#69047E}{Y}},{\color{#D61F06}{X}} are distinct,so this doesn't fit.

So, Y = 4 , X = 8 , Z = 7 , X + Y + Z = 19 {\color{#69047E}{Y}}=4,{\color{#D61F06}{X}}=8,{\color{#3D99F6}{Z}}=7,{\color{#D61F06}{X}}+{\color{#69047E}{Y}}+{\color{#3D99F6}{Z}}=19

Naren Bhandari
May 15, 2018

Simplying the cryptogram we find 100 z + 20 y + 3 x = 100 x + y z = 97 x 19 y 100 100z + 20y +3x =100x+y\implies z =\dfrac{97x-19y}{100} shows that z z is an integer if 97 x 19 y 97x-19y is multiple of 100 < 1000 100 <1000 implying 1 < x 9 1<x\leq 9 . If we further simply the last equation we get z = 100 x 3 x ( 100 81 ) y 100 = x y + 81 y 3 x 100 z= \frac{100x-3x - (100-81)y}{100} = x-y + \frac{81y-3x}{100} Let 81 y 3 x = 100 n 27 y x = 100 n 3 300 81y-3x = 100n \implies 27y -x =\dfrac{100n}{3} \leq 300 This now clearly reflects that 3 n 9 3\leq n\leq 9 . Only possible values we have for n n are 3 , 6 , 9 3,6,9 . Note that y y is an integer so 1 < y 9 1<y\leq 9 . Thus, either 27 y x = 100 27y-x = 100 or 27 y x = 200 27y-x =200 . If 27 y x = 200 27y-x =200 then x > 10 x>10 . 27 y x = 100 x = 27 y 100 \therefore 27y-x = 100 \Rightarrow x =27y- 100 which sure us that 4 y 9 4\leq y\leq 9 . For y > 4 , x 10 y>4, x\geq 10 . Hence, only the possible value of y y is 4 4 . Repluging the value above we find x = 8 {\color{#D61F06}x=8} and z = 7 {\color{#3D99F6}z=7} and y = 4 {\color{#302B94}y =4}

Therefore, x + y + z = 19 x+y+z=\boxed{19} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...