Complex Set

Algebra Level 5

Let A A be a subset of the real numbers such that A = { a a = z 2 + z 1 } A=\left\{ a|a=|{ z }^{ 2 }+z-1| \right\} in which z z is a complex number such that z = 1 |z|=1 . Then, the maximum value of a a equals to?


Inspiration: Technological Institute of Aeronautics (ITA) admission exam


The answer is 2.236.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Writing z z in the polar form: z = c i s α z=cis\alpha where α \alpha is the argument of the complex number:

Then a = c i s 2 α + c i s α 1 a=|cis2\alpha +cis\alpha -1| \Longleftrightarrow a = c i s 2 α + c i s α c i s 0 a=|cis2\alpha +cis\alpha -cis0| \Longleftrightarrow a = ( c i s α ) ( c i s α + 1 c i s ( α ) ) a=|(cis\alpha)(cis\alpha +1 -cis(-\alpha))|

But c i s α + c i s ( α ) cis\alpha + cis(-\alpha) equals to z z ˉ z - \bar { z } that equals to 2 i s i n α 2i sin\alpha

Then a a equals to ( c i s α ) ( 1 + 2 i s i n α ) |(cis\alpha)(1+2isin\alpha)|

Property: z . w = z . w |z.w|=|z|.|w| hence, a = c i s α 1 + 2 i s i n α a=|cis\alpha||1+2isin\alpha| \Longleftrightarrow a = 1 2 + 4 sin 2 α a=\sqrt { { 1 }^{ 2 }+4\sin ^{ 2 }{ \alpha } } which is maximized when s i n α sin\alpha equals to 1 1 .

So, the maximum value of a a is 5 \boxed { \sqrt { 5 } }

Nice solution! I missed a minus sign somewhere and ended up with some other term inside the root :(

Arunava Das - 3 years, 4 months ago

Log in to reply

Sad that you missed a sign :( Nevertheless, if your only mistake was this one, you did a great job indeed!

João Vitor Cordeiro de Brito - 3 years, 2 months ago
Tom Engelsman
Dec 20, 2020

Let's try a calculus solution to this problem. Let z = x + y i z = x+yi such that x 2 + y 2 = 1 x^2+y^2 =1 . If a = z 2 + z 1 a = |z^2+z-1| , then:

a = ( x + y i ) 2 + ( x + y i ) 1 = ( x 2 y 2 + x 1 ) 2 + ( 2 x y + y ) 2 ; a = |(x+yi)^2 + (x+yi) - 1| = \sqrt{(x^2-y^2+x-1)^2 + (2xy + y)^2};

or a = [ x 2 + x 1 ( 1 x 2 ) ] 2 + y 2 ( 2 x + 1 ) 2 ; a = \sqrt{[x^2+x-1 - (1-x^2)]^2 + y^2(2x+1)^2};

or a = ( 2 x 2 + x 2 ) 2 + ( 1 x 2 ) ( 2 x + 1 ) 2 ; a = \sqrt{(2x^2+x -2)^2 + (1-x^2)(2x+1)^2};

or a = f ( x ) = 5 4 x 2 . a = f(x) = \sqrt{5-4x^2}.

Taking the first derivative equal to zero yields: f ( x ) = 4 x 5 4 x 2 = 0 x = 0 f'(x) = -\frac{4x}{\sqrt{5-4x^2}} = 0 \Rightarrow x = 0 . The second derivative at x = 0 x = 0 produces:

f ( x ) = 20 ( 5 4 x 2 ) 3 / 2 f ( 0 ) = 4 5 < 0 f''(x) = -\frac{20}{(5-4x^2)^{3/2}} \Rightarrow f''(0) = -\frac{4}{\sqrt{5}} < 0

hence a global maximum. Finally, a M A X = 5 4 0 2 = 5 . a_{MAX} = \sqrt{5-4 \cdot 0^2} = \boxed{\sqrt{5}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...