Liu's Maximization

Calculus Level 5

If x 0 x_0 is the value of x x such that the expression 20 x + 3 + 20 3 x \sqrt{20x+3} + \sqrt{20-3x} attains its maximum over the reals, find 1 0 4 x 0 \left \lfloor 10^4 \cdot x_0 \right \rfloor .


The answer is 57775.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Discussions for this problem are now closed

Chew-Seong Cheong
Dec 29, 2014

Let y = ( 20 x + 3 ) 1 2 + ( 20 3 x ) 1 2 \space y = (20x+3)^{\frac{1}{2}} + (20-3x)^{\frac{1}{2}} .

d y d x = 1 2 ( 20 x + 3 ) 1 2 1 ( 20 ) + 1 2 ( 20 3 x ) 1 2 1 ( 3 ) \quad \Rightarrow \dfrac {dy}{dx} = \frac {1}{2} (20x+3)^{\frac{1}{2}-1} (20) + \frac {1}{2} (20- 3x)^{\frac{1}{2}-1} (-3)

= 10 20 x + 3 3 2 20 3 x = 20 20 3 x 3 20 x + 3 2 20 x + 3 20 3 x \quad \quad \quad \quad = \dfrac {10} {\sqrt{20x+3}} - \dfrac {3} {2\sqrt{20-3x}} = \dfrac {20\sqrt{20-3x} - 3\sqrt{20x+3} } {2\sqrt{20x+3} \sqrt{20-3x}}

We know that y y is maximum, when d y d x = 0 \frac {dy}{dx} = 0 , that is when:

20 20 3 x 3 20 x + 3 = 0 20 20 3 x = 3 20 x + 3 \quad 20\sqrt{20-3x} - 3\sqrt{20x+3} = 0\quad \Rightarrow 20\sqrt{20-3x} = 3\sqrt{20x+3}

400 ( 20 3 x ) = 9 ( 20 x + 3 ) 8000 1200 x = 180 x + 27 \quad \Rightarrow 400(20-3x) = 9(20x+3) \quad \Rightarrow 8000 - 1200x = 180x + 27

1380 x = 7973 x = 7973 1380 \quad \Rightarrow 1380x = 7973 \quad \Rightarrow x = \dfrac {7973}{1380}

x = 5.777536232 1 0 4 ˙ x 0 = 57775 \quad \Rightarrow x = 5.777536232 \quad \Rightarrow \lfloor {10^4\dot{}x_0} \rfloor = \boxed{57775}

the first solution was brute force using an algorithm ....but suddenly i remember how to get the max value so i do the same solution .....sometimes dealing with symbols is much better than dealing with Semicolons .

Ahmed Ashraf Awwad - 6 years, 5 months ago
Calvin Lin Staff
Dec 31, 2014

Since we just featured the Cauchy Schwarz Inequality Wiki , let me point out an algebraic way of solving this.

20 x + 3 + 20 3 x = 1 3 60 x 9 + 1 20 400 60 x ( 1 3 + 1 20 ) ( 60 x 9 + 400 60 x ) = 23 60 × 409 \begin{aligned} \sqrt{ 20x + 3 } + \sqrt{ 20 - 3x } & = \frac{ 1}{ \sqrt{3} } \sqrt{ 60x - 9 } + \frac{ 1}{ \sqrt{20} } \sqrt{ 400 - 60x } \\ & \leq ( \frac{1}{3} + \frac{1}{20} ) ( 60x - 9 + 400 - 60x ) \\ & = \frac{ 23}{60} \times 409 \\ \end{aligned}

Equality occurs when:

60 x 9 1 3 = 400 60 x 1 20 \frac{ \sqrt{ 60x-9} } { \frac{1}{ \sqrt{3} } } = \frac{ \sqrt{ 400-60x } } { \frac{1}{ \sqrt{20} } }

which gives us 180 x 27 = 8000 1200 x x = 7973 1380 180x - 27 = 8000 - 1200 x \Rightarrow x = \frac{ 7973}{ 1380} .


This approach easily generalizes and teaches us how to deal with f ( x ) + g ( x ) \sqrt{ f(x) } + \sqrt{ g(x) } where f ( x ) , g ( x ) f(x), g(x) are linear functions which have slopes of different signs.

This is beautiful, Calvin. Thank you again!

Guilherme Dela Corte - 6 years, 5 months ago
Aaaaa Bbbbb
Dec 28, 2014

f ( x ) = 20 2 × ( 20 x + 3 ) 3 2 × ( 20 3 x ) f'(x)=\frac{20}{\sqrt{2 \times (20x+3)}}-\frac{3}{\sqrt{2 \times (20-3x)}} 20 × 2 × ( 20 3 x ) 3 × 2 × ( 20 x + 3 ) = 0 20\times\sqrt{2\times(20-3x)}-3\times\sqrt{2\times(20x+3)}=0 20 × 2 × ( 20 3 x ) = 3 × 2 × ( 20 x + 3 ) 20\times\sqrt{2\times(20-3x)}=3\times\sqrt{2\times(20x+3)} 400 × ( 2 × ( 20 3 x ) ) = 9 ( 2 ( 20 x + 3 ) ) 400\times(2\times(20-3x))=9(2*(20x+3)) 400 × ( 20 3 x ) = 9 × ( 20 x + 3 ) 400\times(20-3x)=9\times(20x+3) 8000 1200 × x = 180 × x + 27 8000-1200\times x=180\times x+27 ( 1200 + 180 ) x = 8000 27 (1200+180)x=8000-27 x 0 = 8000 27 1200 + 180 x_{0}=\frac{8000-27}{1200+180} f M A X = 20 × x 0 + 3 + 20 3 × x 0 f_{MAX}=\sqrt{20 \times x_{0}+3}+\sqrt{20-3 \times x_{0}} 1 0 4 x 0 = 57775 \Rightarrow \lfloor 10^4 \cdot x_{0} \rfloor = \boxed{57775}

Brock Brown
Dec 28, 2014
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
from math import sqrt
def f(x):
    y = sqrt(20*x+3)+sqrt(20-3*x)
    return y
def floor(x):
    return int(str(x).split('.')[0])
answer = 0
biggest = 0
n = 0
while n <= 6:
    if f(n) > biggest:
        biggest = f(n)
        answer = n
    n += 0.0001
answer = floor(answer*10**4)
print "Answer:", answer

This is a Calculus question, not a Computer Science one.

Guilherme Dela Corte - 6 years, 5 months ago

Well, I made it one. :P

Brock Brown - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...