Limited yet powerful (II)

Calculus Level 2

lim x ( 1 1 x ) x = e N \lim_{x\rightarrow\infty} (1-\frac{1}{x})^{x} =e^{N} . N = ? N=?

This problem differs by just one stroke.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Noel Lo
Nov 30, 2015

lim x ( 1 1 x ) x = e x p ( lim x l n ( 1 1 x ) x ) = e x p ( lim x l n ( x 1 x ) x ) \lim_{x\rightarrow\infty} (1-\frac{1}{x})^{x} =exp(\lim_{x\rightarrow\infty} ln(1-\frac{1}{x})^{x})=exp(\lim_{x\rightarrow\infty} ln(\frac{x-1}{x})^{x}) = e x p ( lim x l n ( x 1 ) l n ( x ) 1 x ) = e x p ( lim x 1 x 1 1 x 1 x 2 ) = e x p ( lim x 1 x ( x 1 ) 1 x 2 ) = e x p ( lim x x x 1 ) =exp(\lim_{x\rightarrow\infty} \frac{ln(x-1)-ln(x)}{\frac{1}{x}})=exp(\lim_{x\rightarrow\infty} \frac{\frac{1}{x-1}-\frac{1}{x}}{\frac{-1}{x^2}})=exp(\lim_{x\rightarrow\infty} \frac{\frac{1}{x(x-1)}}{\frac{-1}{x^2}})=exp(\lim_{x\rightarrow\infty} \frac{-x}{x-1}) = e x p ( 1 ) = e 1 =exp(-1)=e^{-1}

Don't understand at all. What is exp. Sorry i am stupid.

Davin Shaun - 5 years, 6 months ago

Log in to reply

exp(x)=e^x

Luke Smith - 10 months, 2 weeks ago
Oliver Petts
Jul 30, 2020

( 1 1 x ) x = ( x 1 x ) x = ( x x 1 ) x = ( x x 1 ) x ( x x 1 ) 1 ( x x 1 ) 1 = ( x x 1 ) 1 x ( x x 1 ) 1 = [ ( x x 1 ) x 1 ] 1 ( x x 1 ) 1 \left( 1-\frac { 1 }{ x } \right) ^{ x }=\left( \frac { x-1 }{ x } \right) ^{ x }=\left( \frac { x }{ x-1 } \right) ^{ -x }=\left( \frac { x }{ x-1 } \right) ^{ -x }\cdot \left( \frac { x }{ x-1 } \right) ^{ 1 }\cdot \left( \frac { x }{ x-1 } \right) ^{ -1 }=\left( \frac { x }{ x-1 } \right) ^{ 1-x }\cdot \left( \frac { x }{ x-1 } \right) ^{ -1 }=\left[ \left( \frac { x }{ x-1 } \right) ^{ x-1 } \right] ^{ -1 }\cdot \left( \frac { x }{ x-1 } \right) ^{ -1 }

As lim x ( x x 1 ) x 1 = e \lim _{ x\rightarrow \infty }{ \left( \frac { x }{ x-1 } \right) ^{ x-1 } } =e (let y = x - 1) then we have,

[ ( x x 1 ) x 1 ] 1 ( x x 1 ) 1 = e 1 ( x x 1 ) 1 = e 1 ( x 1 x ) = e 1 ( 1 1 x ) \left[ \left( \frac { x }{ x-1 } \right) ^{ x-1 } \right] ^{ -1 }\cdot \left( \frac { x }{ x-1 } \right) ^{ -1 }=e^{ -1 }\cdot \left( \frac { x }{ x-1 } \right) ^{ -1 }=e^{ -1 }\cdot \left( \frac { x-1 }{ x } \right) =e^{ -1 }\cdot \left( 1-\frac { 1 }{ x } \right)

So, lim x ( 1 1 x ) x = e 1 lim x ( 1 1 x ) = e 1 1 = e 1 \lim _{ x\rightarrow \infty }{ \left( 1-\frac { 1 }{ x } \right) ^{ x } } =e^{ -1 }\cdot \lim _{ x\rightarrow \infty }{ \left( 1-\frac { 1 }{ x } \right) } =e^{ -1 }\cdot 1=e^{ -1 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...