ln \ln and ln 2 \ln^2

Calculus Level 4

If given that lim x 0 ln ( 2 cos 2 x ) ln 2 ( sin 3 x + 1 ) = a b , \displaystyle \lim_{x \to 0} \dfrac{\ln(2-\cos2x)}{\ln^2(\sin3x + 1)} = \dfrac{a}{b} ,

find a 2 + b 2 a^2 + b^2 where a a and b b are relatively prime,


The answer is 85.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We could solve this problem using a variety of methods, from Expansions to L'Hospital's Rule.

I will do it the easiest way - using expansions.

As x 0 x \to 0 , this is what happens

  • ln ( 1 + sin x ) sin x \ln (1 + \sin x) \approx \sin x

  • sin x x \sin x \approx x

2 cos 2 x = 1 + 2 sin 2 x 2 - \cos2x = 1 + 2\sin^2x

Using the above information,

ln ( 2 cos 2 x ) ln ( 1 + 2 sin 2 x ) 2 sin 2 x 2 x 2 \ln(2- \cos2x) \approx \ln(1+2\sin^2x) \approx 2\sin^2x \approx 2x^2

ln 2 ( sin 3 x + 1 ) = ln ( sin 3 x + 1 ) ln ( sin 3 x + 1 ) sin 3 x sin 3 x 9 x 2 \ln^2(\sin3x + 1) = \ln(\sin3x + 1) \ln(\sin3x + 1) \approx \sin3x \sin3x \approx 9x^2

Hence the required limit reduces to:

a b = 2 x 2 9 x 2 = 2 9 \frac{a}{b} = \frac{2x^2}{9x^2} = \frac{2}{9}

a 2 + b 2 = 85 a^2 + b^2 = \boxed{85}

Moderator note:

You should be careful to explain exactly how the approximations work. If your approximations are not accurate enough, then we might run into some issues.

It is better to phrase the solution in terms of error terms, and bounding those values (given that you want to avoid L'hopital's rule).

does ln^2(x) mean ln(x)^2 or ln(lnx) or(lnx)*(lnx)

Ajinkya Shivashankar - 4 years, 7 months ago
Hobart Pao
Oct 24, 2015

I hope I got the parentheses correct!

If you try substituting zero initially, you get 0/0. So, L'Hopital's rule can be applied here. = lim x 0 1 2 cos ( 2 x ) sin ( 2 x ) 2 2 ln ( sin ( 3 x ) + 1 ) 1 sin ( 3 x ) + 1 cos ( 3 x ) 3 \displaystyle = \lim_{x \rightarrow 0} \displaystyle \frac{\frac{1}{2-\cos(2x)}\cdot \sin(2x) \cdot 2}{2\ln(\sin(3x) + 1) \cdot \frac{1}{\sin(3x)+1}\cdot \cos(3x) \cdot 3} If you try substituting again, you still get 0/0 so you must apply L'Hopital's rule again. = lim x 0 2 ( cos ( 2 x ) ( 2 cos ( 2 x ) ( sin ( 2 x ) ) ( sin ( 2 x ) ) ( 2 ) ) ( 2 cos ( 2 x ) ) 2 ( ( sin ( 3 x ) + 1 ) ( cos ( 3 x ) 1 sin ( 3 x ) + 1 cos ( 3 x ) 3 ) + ( 3 sin ( 3 x ) ) ( ln ( sin ( 3 x + 1 ) ) ) ( cos ( 3 x ) ) ( ln ( sin ( 3 x ) + 1 ) ) ( cos ( 3 x ) ) ) 3 ( sin ( 3 x ) + 1 ) 2 \displaystyle = \lim_{x \rightarrow 0}\frac{\displaystyle\frac{2(\cos(2x)(2-\cos(2x)-(\sin(2x))(\sin(2x))(2))}{(2-\cos(2x))^{2}}}{\displaystyle \frac{((\sin(3x)+1)(\cos(3x)\cdot \frac{1}{\sin(3x)+1}\cdot \cos(3x) \cdot 3)+(3 \cdot -\sin(3x))(\ln(\sin(3x+1)))-(\cos(3x))(\ln(\sin(3x)+1))(\cos(3x)))\cdot3}{(\sin(3x)+1)^{2}}}

Substituting in 0 0 , we know that sin ( a 0 ) = 0 \sin(a \cdot 0) = 0 and cos ( a 0 ) = 1 \cos (a \cdot 0) = 1 so you end up with 2 1 9 1 = 2 9 \frac{\frac{2}{1}}{\frac{9}{1}}=\frac{2}{9} and 2 2 + 9 2 = 85 2^{2}+9^{2} = \boxed{85}

does ln^2(x) mean ln(x)^2 or ln(lnx) or(lnx)*(lnx)

Ajinkya Shivashankar - 4 years, 7 months ago

Log in to reply

It means the last one.

Hobart Pao - 4 years, 7 months ago

Same notation used with trig

Hobart Pao - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...