For n ≥ 1 , let G n be the geometric mean of { sin ( 2 n k π ) : 1 ≤ k ≤ n } . Find n → ∞ lim G n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
This is not an algebra problem, but a calculus problem . The value of the limit is
e ∫ 0 1 ln sin 2 π x d x = 2 1 = 0 . 5 .
Problem Loading...
Note Loading...
Set Loading...
n → ∞ lim G n = n → ∞ lim n k = 1 ∏ n sin 2 n k π = n → ∞ lim exp ( ln ( n k = 1 ∏ n sin 2 n k π ) ) = exp ( n → ∞ lim n 1 k = 1 ∑ n ln ( sin 2 n k π ) ) = exp ( ∫ 0 1 ln ( sin 2 π x ) d x ) = exp ( − ln ( 2 ) ) = 2 1 = 0 . 5 where exp ( x ) = e x By Riemann sums See note below.
Note:
I = ∫ 0 1 ln ( sin 2 π x ) d x = π 2 ∫ 0 2 π ln ( sin θ ) d θ = π 2 ∫ 0 2 π ln ( 2 i e i θ − e − i θ ) d θ = π 2 ∫ 0 2 π ln ( e i θ − e − i θ ) d θ − π 2 ∫ 0 2 π ln ( 2 i ) d θ = π 2 ∫ 0 2 π ln ( e − i θ 1 − e − 2 i θ ) d θ − π 2 ln ( 2 i ) ( 2 π − 0 ) = π 2 ∫ 0 2 π ln ( 1 − e − 2 i θ ) d θ − π 2 ∫ 0 2 π ln ( e − i θ ) d θ − ln ( 2 i ) = π 1 ∫ 0 π ln ( 1 − e − i ϕ ) d ϕ − π 2 ∫ 0 2 π ( − i θ ) d θ − ln ( 2 i ) = π 1 ∫ 0 π − ( n = 1 ∑ ∞ n e − n i ϕ ) d ϕ + π i θ 2 ∣ ∣ ∣ ∣ 0 2 π − ln 2 − ln ( e 2 i π ) = π 1 [ n = 1 ∑ ∞ n 2 i e − n i ϕ ] 0 π + 4 i π − ln 2 − 2 i π = − π i n = 1 ∑ ∞ n 2 ( − 1 ) n − 1 − 4 i π − ln 2 = π 2 i n = 0 ∑ ∞ ( 2 n + 1 ) 2 1 − 4 i π − ln 2 = π 2 i ( ζ ( 2 ) − 4 ζ ( 2 ) ) − 4 i π − ln 2 = π 2 i ( 4 3 × 6 π 2 ) − 4 i π − ln 2 = 4 i π − 4 i π − ln 2 = − ln 2 Let θ = 2 π x ⟹ d θ = 2 π d x By Euler’s formula Let ϕ = 2 θ ⟹ d ϕ = 2 d θ By Maclaurin series where ζ ( ⋅ ) is the Riemann zeta function. and ζ ( 2 ) = 6 π 2
References: