Lockdown Math - Limits

Calculus Level 3

For n 1 n \geq 1 , let G n G_n be the geometric mean of { sin ( k π 2 n ) : 1 k n } \left \{ \sin \left(\dfrac{k\pi}{2n} \right) : 1 \le k \le n \right \} . Find lim n G n \displaystyle \lim_{n \to \infty}G_n .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

lim n G n = lim n k = 1 n sin k π 2 n n = lim n exp ( ln ( k = 1 n sin k π 2 n n ) ) where exp ( x ) = e x = exp ( lim n 1 n k = 1 n ln ( sin k π 2 n ) ) By Riemann sums = exp ( 0 1 ln ( sin π x 2 ) d x ) See note below. = exp ( ln ( 2 ) ) = 1 2 = 0.5 \begin{aligned} \lim_{n \to \infty} G_n & = \lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^n \sin \frac {k\pi}{2n}} \\ & = \lim_{n \to \infty} \exp \left(\ln \left(\sqrt[n]{\prod_{k=1}^n \sin \frac {k\pi}{2n}}\right) \right) & \small \blue{\text{where }\exp (x) = e^x} \\ & = \exp \left(\lim_{n \to \infty} \frac 1n \sum_{k=1}^n \ln \left(\sin \frac {k\pi}{2n}\right)\right) & \small \blue{\text{By Riemann sums}} \\ & = \exp \left(\blue{\int_0^1 \ln \left(\sin \frac {\pi x}2 \right) dx} \right) & \small \blue{\text{See note below.}} \\ & = \exp \left(\blue{-\ln(2)}\right) = \frac 12 = \boxed{0.5} \end{aligned}


Note:

I = 0 1 ln ( sin π x 2 ) d x Let θ = π x 2 d θ = π 2 d x = 2 π 0 π 2 ln ( sin θ ) d θ By Euler’s formula = 2 π 0 π 2 ln ( e i θ e i θ 2 i ) d θ = 2 π 0 π 2 ln ( e i θ e i θ ) d θ 2 π 0 π 2 ln ( 2 i ) d θ = 2 π 0 π 2 ln ( 1 e 2 i θ e i θ ) d θ 2 π ln ( 2 i ) ( π 2 0 ) = 2 π 0 π 2 ln ( 1 e 2 i θ ) d θ 2 π 0 π 2 ln ( e i θ ) d θ ln ( 2 i ) Let ϕ = 2 θ d ϕ = 2 d θ = 1 π 0 π ln ( 1 e i ϕ ) d ϕ 2 π 0 π 2 ( i θ ) d θ ln ( 2 i ) By Maclaurin series = 1 π 0 π ( n = 1 e n i ϕ n ) d ϕ + i θ 2 π 0 π 2 ln 2 ln ( e i π 2 ) = 1 π [ n = 1 e n i ϕ n 2 i ] 0 π + i π 4 ln 2 i π 2 = i π n = 1 ( 1 ) n 1 n 2 i π 4 ln 2 = 2 i π n = 0 1 ( 2 n + 1 ) 2 i π 4 ln 2 = 2 i π ( ζ ( 2 ) ζ ( 2 ) 4 ) i π 4 ln 2 where ζ ( ) is the Riemann zeta function. = 2 i π ( 3 4 × π 2 6 ) i π 4 ln 2 and ζ ( 2 ) = π 2 6 = i π 4 i π 4 ln 2 = ln 2 \begin{aligned} I & = \int_0^1 \ln \left(\sin \frac {\pi x}2\right) dx & \small \blue{\text{Let }\theta = \frac {\pi x}2 \implies d\theta = \frac \pi 2 dx} \\ & = \frac 2\pi \int_0^\frac \pi 2 \ln \left(\blue{\sin \theta} \right) d\theta & \small \blue{\text{By Euler's formula}} \\ & = \frac 2\pi \int_0^\frac \pi 2 \ln \left(\blue{\frac {e^{i\theta}-e^{-i\theta}}{2i}} \right) d\theta \\ & = \frac 2\pi \int_0^\frac \pi 2 \ln \left(e^{i\theta} - e^{-i\theta} \right) d\theta - \frac 2 \pi \int_0^\frac \pi 2 \ln (2i)\ d\theta \\ & = \frac 2\pi \int_0^\frac \pi 2 \ln \left(\frac {1 -e^{-2i\theta}}{e^{-i\theta}} \right) d\theta - \frac 2 \pi \ln (2i) \left( \frac \pi 2 - 0 \right) \\ & = \blue{\frac 2\pi \int_0^\frac \pi 2 \ln \left(1 -e^{-2i\theta}\right) d\theta} - \frac 2 \pi \int_0^\frac \pi 2 \ln \left(e^{-i\theta} \right) d\theta - \ln (2i) & \small \blue{\text{Let }\phi = 2\theta \implies d\phi = 2 d\theta} \\ & = \blue{\frac 1\pi \int_0^\pi \ln \left(1 -e^{-i\phi}\right) d\phi} - \frac 2 \pi \int_0^\frac \pi 2 \left(-i\theta \right) d\theta - \ln (2i) & \small \blue{\text{By Maclaurin series}} \\ & = \blue{\frac 1\pi \int_0^\pi -\left(\sum_{n=1}^\infty \frac {e^{-n i\phi}}n \right) d\phi} + \frac {i\theta^2} \pi \bigg|_0^\frac \pi 2 - \ln 2 - \ln \left(e^{\frac {i\pi} 2}\right) \\ & = \frac 1\pi \left[\sum_{n=1}^\infty \frac {e^{-n i\phi}}{n^2i} \right]_0^\pi + \frac {i\pi}4 - \ln 2 - \frac {i\pi} 2 \\ & = - \frac i\pi \sum_{n=1}^\infty \frac {(-1)^n-1}{n^2} - \frac {i\pi}4 - \ln 2 \\ & = \frac {2i}\pi \sum_{n=0}^\infty \frac 1{(2n+1)^2} - \frac {i\pi}4 - \ln 2 \\ & = \frac {2i}\pi \left(\blue{\zeta (2)} - \frac \blue{\zeta (2)}4 \right) - \frac {i\pi}4 - \ln 2 & \small \blue{\text{where }\zeta(\cdot) \text{ is the Riemann zeta function.}} \\ & = \frac {2i}\pi \left(\frac 34 \times \blue{\frac {\pi^2}6}\right) - \frac {i\pi}4 - \ln 2 & \small \blue{\text{and }\zeta(2) = \frac {\pi^2}6} \\ & = \frac {i\pi}4 - \frac {i\pi}4 - \ln 2 \\ & = - \ln 2 \end{aligned}


References:

This is not an algebra problem, but a calculus problem . The value of the limit is

e 0 1 ln sin π x 2 d x = 1 2 = 0.5 e^{\displaystyle \int_0^1 \ln \sin \frac{πx}{2}dx}=\dfrac{1}{2}=\boxed {0.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...