Log!

Algebra Level 3

For what positive integer value of x x is the 9 th 9^\text{th} term in the expression ( 3 log 3 2 5 x 1 + 7 + 3 1 8 log 3 ( 5 x 1 + 1 ) ) 10 \left( 3^{\log_3 \sqrt{25^{x-1} + 7}} + 3^{-\frac18 \log_3 \left(5^{x-1} + 1\right)} \right)^{10} is 180?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zee Ell
Jan 18, 2017

Let a = 5 x 1 \text {Let } a = 5^{x-1}

Then:

3 log 3 2 5 x 1 + 7 = 2 5 x 1 + 7 = a 2 + 7 3 ^ { \log _3 \sqrt { 25^ {x -1} + 7 } } = \sqrt { 25^ {x -1} + 7 } = \sqrt { a^2 + 7 }

3 1 8 log 3 5 x 1 + 1 = ( 5 x 1 + 1 ) 1 8 = 1 5 a + 1 8 3 ^ { - \frac {1}{8} \log _3 { 5^ {x -1} + 1 } } = (5^ {x -1} + 1 ) ^ { - \frac {1}{8} } = \frac {1}{ \sqrt [8] { 5a + 1 } }

Now, the 9th term of the binomial expansion of our expression:

( 10 8 ) ( a 2 + 7 ) 2 ( 1 5 a + 1 8 ) 8 = 180 { 10 \choose 8 } ( \sqrt { a^2 + 7 } )^2 ( \frac {1}{ \sqrt [8] { 5a + 1 } } )^8 = 180

45 a 2 + 7 a + 1 = 180 45 \frac {a^2 + 7}{a + 1} = 180

a 2 + 7 a + 1 = 4 \frac {a^2 + 7}{a + 1} = 4

a 2 + 7 = 4 a + 4 a^2 + 7 = 4a + 4

a 2 4 a + 3 = 0 a^2 - 4a + 3 = 0

( a 3 ) ( a 1 ) = 0 (a -3)(a-1) = 0

a = 3 or a = 1 a = 3 \text { or } a = 1

If a =3:

5 x 1 = 3 5^{x - 1} = 3

x 1 = log 5 3 x - 1 = \log _5 3

x = 1.6826 (4 d. p.) Not an integer, therefore not a solution. x = 1.6826 \text { (4 d. p.) } \Rightarrow \text { Not an integer, therefore not a solution. }

If a =1:

5 x 1 = 1 5^{x - 1} = 1

x 1 = log 5 1 = 0 x - 1 = \log _5 1 = 0

x = 1 x = \boxed {1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...