log

Algebra Level 2

log ( tan 1 ) + log ( tan 2 ) + log ( tan 3 ) + . . . . . . + log ( tan 8 9 ) \log\left( \tan 1^{\circ }\right) + \log\left( \tan 2^{\circ }\right) +\log\left( \tan 3^{\circ }\right) + ......+ \log\left( \tan 89^{\circ }\right)

If the above expression is equal to x x , then find the value of x + 5 x+5 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Most of us know that...

log a + log b = log a b \log a + \log b = \log ab

and that...

tan θ × tan ( θ 90 ) = 1 \tan \theta \times \tan (\theta - 90) = 1

and tan 45 = 1 \tan 45 = 1

Simplifying the equation, we get...

log tan ( 1 × 2 × 3 × . . . × 44 × 45 × 46 × . . . × 87 × 88 × 89 ) \log \tan (1 \times 2 \times 3 \times ... \times 44 \times 45 \times 46 \times ... \times 87 \times 88 \times 89) log tan ( 1 × 2 × 3 × . . . × 44 × 45 × ( 90 44 ) × . . . × ( 90 3 ) × ( 90 2 ) × ( 90 1 ) \log \tan (1 \times 2 \times 3 \times ... \times 44 \times 45 \times (90 - 44) \times ... \times (90 - 3) \times (90 - 2) \times (90 - 1) log 1 \log 1 0 \boxed{0}

So, x + 5 => 5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...