There's Too Many Logarithms To Calculate

Algebra Level 1

log 2 3 × log 3 4 × log 4 5 × × log 127 128 = ? \large \log_2 3 \times \log_3 4 \times \log_4 5 \times \cdots\times \log_{127} 128 = \, ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Properties of Logarithms - Basic

log 2 3 × log 3 4 × log 4 5... log 127 128 \large \log _{ 2 }{ 3 } \times \log _{ 3 }{ 4 } \times \log _{ 4 }{ 5 } ...\log _{ 127 }{ 128 }

= log 3 log 2 × log 4 log 3 × log 5 log 4 × × log 128 log 127 \large= \frac { \log { 3 } }{ \log { 2 } } \times \frac { \log { 4 } }{ \log { 3 } } \times \frac { \log { 5 } }{ \log { 4 } } \times\cdots \times \frac { \log { 128 } }{ \log { 127 } }

= log 3 × log 4 × log 5 × . . . log 128 log 2 × log 3 × log 4 × . . . log 127 \large=\frac { \log { 3\quad \times \quad \log { 4 } \quad \times \quad \log { 5 } \quad \times \quad ...\quad \log { 128 } } }{ \log { 2 } \quad \times \quad \log { 3 } \quad \times \quad \log { 4 } \quad \times \quad ...\quad \log { 127 } }

= log 128 log 2 \large= \frac { \log { 128 } }{ \log { 2 } }

= log 2 128 \large= \log _{ 2 }{ 128 }

= log 2 2 7 \large =\log _{ 2 }{ { 2 }^{ 7 } }

= 7 × log 2 2 \large=7 \times \log _{ 2 }{ { 2 } }

= 7 × 1 \large=7 \times1

= 7 \large= \boxed{7}

Nice and beautiful solution! I had done exactly same. Specially to evaluate log 2 128 = l o g 2 2 7 = 7 l o g 2 2 = 7 × 1 = 7 \log_2 128 = log_2 2^7 = 7 log_2 2 = 7\times1 = 7

akash patalwanshi - 5 years, 1 month ago

Not understand why we find log128/log2 .Please help me

Kilian Kaeser - 11 months, 1 week ago
Pham Khanh
Apr 23, 2016

C a l l : log 2 3 = a 1 ; log 3 4 = a 2 ; ; log 127 128 = a 126 Call:~\log_{2}{3}=a_{1};\log_{3}{4}=a_{2};\cdot\cdot\cdot;\log_{127}{128}=a_{126} 2 a 1 = 3 ; 3 a 2 = 4 ; ; 12 7 a 126 = 128 \implies 2^{a_{1}}=3;3^{a_{2}}=4;\cdot\cdot\cdot;127^{a_{126}}=128 ( ( ( ( 2 a 1 ) a 2 ) ) a 126 ) = 128 \iff ((\cdot\cdot\cdot((2^{a_{1}})^{a_{2}})^{\cdot\cdot\cdot})^{a_{126}})=128 2 a 1 × a 2 × × a 126 = 128 = 2 7 \iff 2^{a_{1} \times a_{2} \times \cdot\cdot\cdot \times a_{126}}=128=2^{7} a 1 × a 2 × × a 126 = 7 \iff a_{1} \times a_{2} \times \cdot\cdot\cdot \times a_{126}=7 Hence, the answer is 7 \LARGE \boxed{7}

Oximas Omar
May 15, 2021

log 2 3 log 3 4 log 4 5... log 127 128 \log_2{3}\cdot\log_3{4}\cdot\log_4{5}...\log_{127}{128}

us the change of base formula we see that all cancel except two values resulting in:

log 128 log 2 \frac{\log{128}}{\log{2}} = log 2 128 \log_2{128} = log 2 2 7 \log_2{2^{7}} =7

I will leave it to you to fill in the details as this will help you learn.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...