Log and Log

Algebra Level 4

log 216 ( log 6 x ) = log 6 ( log 216 x ) , ( log 6 x ) 2 = ? \large\log_{216}{(\log_6x)}=\log_6{(\log_{216}x)} \quad, \quad (\log_6x)^2 = \ ?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 28, 2015

log 216 ( log 6 x ) = log 6 ( log 216 x ) log 6 ( log 6 x ) log 6 216 = log 6 ( log 6 x log 6 216 ) log 6 ( log 6 x ) 3 = log 6 ( log 6 x 3 ) log 6 ( log 6 x ) = 3 log 6 ( log 6 x 3 ) log 6 ( log 6 x ) = log 6 ( log 6 x 3 ) 3 log 6 x = ( log 6 x ) 3 27 ( log 6 x ) 2 = 27 \begin{aligned} \log_{216}\left(\log_6 x\right) & = \log_6 \left( \log_{216} x \right) \\ \frac{\log_{6}\left(\log_6 x\right)}{\log_6 216} & = \log_6 \left( \frac{\log_{6} x }{\log_6 216} \right) \\ \frac{\log_{6}\left(\log_6 x\right)}{3} & = \log_6 \left( \frac{\log_{6} x }{3} \right) \\ \log_{6}\left(\log_6 x\right) & = 3\log_6 \left( \frac{\log_{6} x }{3} \right) \\ \log_{6}\left(\log_6 x\right) & = \log_6 \left( \frac{\log_{6} x }{3} \right)^3 \\ \log_6 x & = \frac{\left(\log_{6} x \right)^3}{27} \\ \Rightarrow \left(\log_{6} x \right)^2 & = \boxed{27} \end{aligned}

Liked your solution upvoted!

Department 8 - 5 years, 9 months ago

Good solution sir .Up voted

Sai Ram - 5 years, 9 months ago

log 216 ( log 6 x ) = log 6 ( log 216 x ) log 6 3 ( log 6 x ) = log 6 ( log 6 3 x ) \log_{216}(\log_{6}x) = \log_{6}(\log_{216}x) \Rightarrow \log_{6^3}(\log_{6}x) = \log_{6}(\log_{6^3}x)

Using property of logarithms: log c d a = 1 d log c a \log_{c^d}a = \dfrac{1}{d}\log_{c}a

1 3 log 6 ( log 6 x ) = log 6 ( 1 3 log 6 x ) = log 6 ( log 6 x ) log 6 3 \Rightarrow \dfrac{1}{3}\log_{6}(\log_{6}x) = \log_{6}(\dfrac{1}{3}\log_{6}x) = \log_{6}(\log_{6}x) - \log_{6}3

log 6 ( 3 3 ) = log 6 ( log 6 x ) log 6 x = 3 3 \Rightarrow \log_{6}(3\sqrt{3}) = \log_{6}(\log_{6}x) \Rightarrow \log_{6}x = 3\sqrt{3}

( log 6 x ) 2 = 27 \Rightarrow (\log_{6}x)^2 = \boxed{27}

Can you please elaborate second line I did not understand it well

Department 8 - 5 years, 9 months ago

Log in to reply

Check now.

Vishwak Srinivasan - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...