Let and be positive integers where and and .
(1): If and have common tangents at and and and , find the area of trapezoid in terms of and .
(2): If and , find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x > 0 ⟹ f ( x ) = lo g e m ( x ) = m ln ( x ) and g ( x ) = lo g e n ( x ) = n ln ( x ) ⟹ f ′ ( a ) = m a 1 = g ′ ( b ) = n b 1 ⟹ a = m n b ⟹
A : ( m n b , ln ( m n b ) ) and B : ( b , n ln ( b ) ) ⟹
m A B = b n ( n − m ) ln ( ( m n ) n b n − m ) = b n 1 ⟹
ln ( ( m n ) n b n − m ) = n − m ⟹ ( m n ) n b n − m = e n − m
⟹ b = ( n m ) n − m n e ⟹ a = ( n m ) n − m m e
⟹
A : ( ( n m ) n − m m e , ln ( ( n m ) n − m 1 e m 1 )
and,
B : ( ( n m ) n − m n e , ln ( ( n m ) n − m 1 e n 1 ) .
Using the symmetry about the y axis we have:
A ′ : ( − ( n m ) n − m m e , ln ( ( n m ) n − m 1 e m 1 )
and,
B ′ : ( − ( n m ) n − m n e , ln ( ( n m ) n − m 1 e n 1 ) .
and E : ( ( n m ) n − m n e , ln ( ( n m ) n − m 1 e m 1 )
A A ′ = 2 ( n m ) n − m m , B B ′ = 2 ( n m ) m − n n and E B = n m n − m ⟹
A A A ′ B ′ B = ( n m ) n − m m ( n n + m ) ( n m n − m ) .
n − m m = 1 ⟹ n = 2 m ⟹ A A A ′ B ′ B = ( ( 2 1 ) ( 2 3 ) ( 2 m 1 ) e = 8 m 3 e = 1 6 e ⟹ m = 6 ⟹ n = 1 2 ⟹ m + n = 1 8 .
Incidentally, the slope m A B = g ′ ( b ) = f ′ ( a ) = n ( n m ) n − m n ∗ e 1 = e 1 ( m n n m ) n − m 1 .