Log in a sum

Calculus Level 4

n = 0 2 2 n 2 n + 1 = a \large \sum _{n=0}^\infty \frac {2^{-2n}}{2n+1} = a

The equation above holds true for real number a a . Find e a e^a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Apr 3, 2017

n = 0 2 2 n 2 n + 1 = n = 0 0 1 x 2 n 2 2 n d x = 0 1 n = 0 ( x 2 ) 2 n d x = 0 1 1 1 ( x / 2 ) 2 d x = ln 3 \displaystyle \sum_{n=0}^{\infty} \dfrac{2^{-2n}}{2n+1} \\ \displaystyle =\sum_{n=0}^{\infty} \int_{0}^{1} x^{2n} 2^{-2n} dx \\ \displaystyle =\int_{0}^{1} \sum_{n=0}^{\infty} (\dfrac{x}{2})^{2n} dx \displaystyle =\int_{0}^{1} \dfrac{1}{1-(x/2)^2} dx=\ln {3}

How did you convert from summation to integration?

Ashish Sacheti - 4 years, 2 months ago

I convert the term 1 / 2 n + ! 1/2n+! into a definite integral and then use infinite G.P. series.Then exchange the operators summation to integration

Kushal Bose - 4 years, 2 months ago

From Maclaurin series , we have:

ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + 1 < x 1 ln ( 1 x ) = x x 2 2 x 3 3 x 4 4 ln ( 1 + x ) ln ( 1 x ) = 2 x + 2 x 3 3 + 2 x 5 5 + 2 x 7 7 + ln ( 1 + x 1 x ) = n = 0 2 x 2 n + 1 2 n + 1 Putting x = 1 2 ln ( 1 + 1 2 1 1 2 ) = n = 0 2 2 ( 2 n + 1 ) 2 n + 1 = n = 0 2 2 n 2 n + 1 = a a = ln ( 1 + 1 2 1 1 2 ) = ln 3 \begin{aligned} \ln(1+x) & = x - \frac {x^2}2 + \frac {x^3}3 - \frac {x^4}4 + \cdots & -1 < x \le 1 \\ \ln(1-x) & = -x - \frac {x^2}2 - \frac {x^3}3 - \frac {x^4}4 - \cdots \\ \ln(1+x) - \ln(1-x) & = 2x + \frac {2x^3}3 + \frac {2x^5}5 + \frac {2x^7}7 + \cdots \\ \implies \ln \left( \frac {1+x}{1-x}\right) & = \sum_{n=0}^\infty \frac {2x^{2n+1}}{2n+1} & \small \color{#3D99F6} \text{Putting }x= \frac 12 \\ \ln \left( \frac {1+\frac 12}{1-\frac 12}\right) & = \sum_{n=0}^\infty \frac {2\cdot2^{-(2n+1)}}{2n+1} \\ & = \sum_{n=0}^\infty \frac {2^{-2n}}{2n+1} = a \\ \implies a & = \ln \left( \frac {1+\frac 12}{1-\frac 12}\right) = \ln 3 \end{aligned}

e a = e ln 3 = 3 \implies e^a = e^{\ln 3} = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...