Given a geometric progression: a + lo g 2 3 , a + lo g 4 3 , a + lo g 8 3 , find the value of the common ratio.
Give your value to three significant figures.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Assume the common ratio is q , then
q = a + lo g 2 3 a + lo g 4 3 = a + lo g 4 3 a + lo g 8 3 .
Due to the theorem that "if k = b a = d c , with b = 0 , d = 0 , b = d , then k = b − d a − c " [1] , we have
q = ( a + lo g 4 3 ) − ( a + lo g 2 3 ) ( a + lo g 8 3 ) − ( a + lo g 4 3 )
= lo g 4 3 − lo g 2 3 lo g 8 3 − lo g 4 3
= lo g 2 3 − lo g 2 3 lo g 2 3 3 − lo g 2 3
= 2 1 lo g 2 3 − lo g 2 3 3 1 lo g 2 3 − 2 1 lo g 2 3
= − 2 1 lo g 2 3 − 6 1 lo g 2 3 = 3 1 ≈ 0 . 3 3 3 .
[1]. Proof of this theorem:
∵ b a = d c ,
∴ a = b t , c = d t , q = t
⇒ a − c = b t − d t = t ( b − d ) ⇒ t = b − d a − c ,
∴ q = b − d a − c .
Problem Loading...
Note Loading...
Set Loading...
Let lo g 2 3 = t . Therefore, lo g 4 3 = 2 1 . lo g 2 3 = 2 t . Similarly, lo g 8 3 = 3 t .
⇒ ( a + t ) , ( a + 2 t ) , ( a + 3 t ) are in geometric progression.
⇒ ( a + 2 t ) 2 = ( a + t ) ( a + 3 t )
∴ a 2 + 4 t 2 + a t = a 2 + 3 t 2 + 3 4 a t ⇒ a t − 3 4 a t = 3 t 2 − 4 t 2 ⇒ − 3 a t = 1 2 t 2 .
Since, t = 0 , a = − 4 t . Thus the given terms are 4 3 t , 4 t , 1 2 t , which are clearly in a geometric progression with a common ratio of 3 1 .