Log in and see the ratios!

Algebra Level 4

Given a geometric progression: a + log 2 3 a+\log_{2}{3} , a + log 4 3 a+\log_{4}{3} , a + log 8 3 a+\log_{8}{3} , find the value of the common ratio.

Give your value to three significant figures.

This problem is from the 2000 Chinese National Mathematics Competition.


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sudeep Salgia
Aug 2, 2015

Let log 2 3 = t \log_{2}3 = t . Therefore, log 4 3 = 1 2 . log 2 3 = t 2 \displaystyle \log_{4}3 = \frac{1}{2} .\log_{2}3 = \frac{t}{2} . Similarly, log 8 3 = t 3 \displaystyle \log_{8}3 = \frac{t}{3} .

( a + t ) , ( a + t 2 ) , ( a + t 3 ) \displaystyle \Rightarrow \left( a + t \right) , \left( a+ \frac{t}{2} \right) , \left( a + \frac{t}{3} \right) are in geometric progression.

( a + t 2 ) 2 = ( a + t ) ( a + t 3 ) \displaystyle \Rightarrow \left( a + \frac{t}{2} \right)^2 = \left( a+t \right) \left(a + \frac{t}{3} \right)

a 2 + t 2 4 + a t = a 2 + t 2 3 + 4 a t 3 a t 4 a t 3 = t 2 3 t 2 4 a t 3 = t 2 12 \displaystyle \therefore a^2 + \frac{t^2}{4} + at = a^2 + \frac{t^2}{3} + \frac{4at}{3} \Rightarrow at - \frac{4at}{3} = \frac{t^2}{3} - \frac{t^2}{4} \Rightarrow - \frac{at}{3} = \frac{t^2}{12} .

Since, t 0 t \neq 0 , a = t 4 a = - \dfrac{t}{4} . Thus the given terms are 3 t 4 , t 4 , t 12 \displaystyle \frac{3t}{4} , \frac{t}{4}, \frac{t}{12} , which are clearly in a geometric progression with a common ratio of 1 3 \boxed{\dfrac{1}{3}} .

Jessica Wang
Aug 2, 2015

Assume the common ratio is q q , then

q = a + log 4 3 a + log 2 3 = a + log 8 3 a + log 4 3 q=\frac{a+\log_{4}{3}}{a+\log_{2}{3}}=\frac{a+\log_{8}{3}}{a+\log_{4}{3}} .

Due to the theorem that "if k = a b = c d , k=\frac{a}{b}=\frac{c}{d}, with b 0 , d 0 , b d b\neq 0,\; d\neq 0,\; b\neq d , then k = a c b d k= \frac{a-c}{b-d} " [1] , we have

q = ( a + log 8 3 ) ( a + log 4 3 ) ( a + log 4 3 ) ( a + log 2 3 ) q=\frac{(a+\log_{8}{3})-(a+\log_{4}{3})}{(a+\log_{4}{3})-(a+\log_{2}{3})}

= log 8 3 log 4 3 log 4 3 log 2 3 =\frac{\log_{8}{3}-\log_{4}{3}}{\log_{4}{3}-\log_{2}{3}}

= log 2 3 3 log 2 3 log 2 3 log 2 3 =\frac{\log_{2}\sqrt[3]{3}-\log_{2}{\sqrt{3}}}{\log_{2}{\sqrt{3}}-\log_{2}{3}}

= 1 3 log 2 3 1 2 log 2 3 1 2 log 2 3 log 2 3 =\frac{\frac{1}{3}\log_{2}{3}-\frac{1}{2}\log_{2}{3}}{\frac{1}{2}\log_{2}{3}-\log_{2}{3}}

= 1 6 log 2 3 1 2 log 2 3 = 1 3 0.333 =\frac{-\frac{1}{6}\log_{2}{3}}{-\frac{1}{2}\log_{2}{3}}=\frac{1}{3}\approx \boxed{0.333} .

[1]. Proof of this theorem:

a b = c d , \because \frac{a}{b}=\frac{c}{d},

a = b t , c = d t , q = t \therefore a=bt,\; c=dt,\; q=t

a c = b t d t = t ( b d ) t = a c b d , \Rightarrow a-c=bt-dt=t(b-d)\Rightarrow t=\frac{a-c}{b-d},

q = a c b d . \therefore q=\frac{a-c}{b-d}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...