Log in with a correct answer

Algebra Level 2

If log 3 log 30 = a \dfrac{\log3}{\log30} = a and log 5 log 30 = b \dfrac{\log5}{\log30} = b , what is log 8 log 30 \dfrac{\log8}{\log30} equal to?

3 ( 1 a b ) 3(1- a - b) 1 2 ( 1 a b ) \frac{1}{2}(1 - a - b) 8 3 ( 1 a b ) \frac{8}{3}(1 - a - b) a + b a + b

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Given that { log 3 log 30 = a log 3 = a log 30 log 5 log 30 = b log 5 = b log 30 \begin{cases} \dfrac {\log 3}{\log 30} = a & \implies \log 3 = a \log 30 \\ \dfrac {\log 5}{\log 30} = b & \implies \log 5 = b \log 30 \end{cases}

Now we have:

log 30 = log 2 + log 3 + log 5 log 2 = log 30 log 3 log 5 = log 30 a log 30 b log 30 = log 30 ( 1 a b ) 3 log 2 = 3 log 30 ( 1 a b ) log 8 log 30 = 3 ( 1 a b ) \begin{aligned} \log 30 & = \log 2 + \log 3 + \log 5 \\ \implies \log 2 & = \log 30 - \log 3 - \log 5 \\ & = \log 30 - a\log 30 - b\log 30 \\ & = \log 30(1-a-b) \\ 3 \log 2 & = 3 \log 30(1-a-b) \\ \implies \frac {\log 8}{\log 30} & = \boxed{3(1-a-b)} \end{aligned}

Samina Siamwalla
Jun 8, 2018
  • On addition we get, l o g 15 l o g 30 \frac{log15}{log30} = a+ b
    l o g 15 l o g 15 2 \frac{log15}{log15*2} = a + b
    l o g 15 l o g 15 + l o g 2 \frac{log15}{log15 + log2} = a + b
    Taking reciprocal we get,
    l o g 2 l o g 15 \frac{log2}{log15} = 1 a b a + b \frac{1 - a - b}{a + b}
    Substituting the value of a + b i.e. l o g 15 l o g 30 \frac{log15}{log30} we get,
    l o g 2 l o g 15 \frac{log2}{log15} = (1 - a - b) l o g 15 l o g 30 \frac{log15}{log30}
    On solving further we get,
    l o g 8 l o g 30 \frac{log8}{log30} = 3(1 - a - b)


Zico Quintina
Jun 10, 2018

log 30 3 = a ; log 30 5 = b log 30 15 = a + b log 30 2 = log 30 30 log 30 15 = 1 a b log 30 8 = 3 log 30 2 = 3 ( 1 a b ) \begin{aligned} \log_{30} 3 = a; & \ \log_{30} 5 = b \\ \\ \log_{30} 15 &= a + b \\ \\ \log_{30} 2 &= \log_{30} 30 - \log_{30} 15 \\ &= 1 - a - b \\ \\ \log_{30} 8 &= 3 \log_{30} 2 \\ &= 3 (1 - a - b) \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...