Log Mania

Calculus Level 4

Let α \alpha and β \beta be positive real numbers where β > α \beta > \alpha and f ( x ) = log α x f(x) = \log_{\alpha}|x| and g ( x ) = log β x g(x) = \log_{\beta}|x| .

  1. If f ( x ) f(x) and g ( x ) g(x) have common tangents at A A and B B and A A' and B B' , find the area of trapezoid A A B B AA'B'B in terms of α \alpha and β \beta .
  2. If ln ( α ) ln ( β α ) = 1 \dfrac{\ln(\alpha)}{\ln \left(\frac{\beta}{\alpha}\right)} = 1 and A A A B B = e 16 A_{AA'B'B} = \dfrac{e}{16} , find α β \lfloor{\alpha\beta}\rfloor .

Refer to previous problem


The answer is 65659969.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 18, 2018

Let m = ln ( α ) m = \ln(\alpha) and n = ln ( β ) α = e m n = \ln(\beta) \implies \alpha = e^m and β = e n \beta = e^n .

x > 0 f ( x ) = log e m ( x ) = ln ( x ) m x > 0 \implies \large f(x) = \log_{e^m}(x) = \dfrac{\ln(x)}{m} and g ( x ) = log e n ( x ) = ln ( x ) n \large g(x) = \log_{e^n}(x) = \dfrac{\ln(x)}{n}

f ( a ) = 1 m a = g ( b ) = 1 n b a = n m b f'(a) = \dfrac{1}{ma} = g'(b) = \dfrac{1}{nb} \implies a = \dfrac{n}{m}b \implies

A : ( n m b , ln ( n m b ) ) A:(\dfrac{n}{m}b, \ln(\dfrac{n}{m}b)) and B : ( b , ln ( b ) n ) B:(b, \dfrac{\ln(b)}{n}) \implies

m A B = ln ( ( n m ) n b n m ) b n ( n m ) = 1 b n \large m_{AB} = \dfrac{\ln((\dfrac{n}{m})^n b^{n - m})}{bn(n - m)} = \dfrac{1}{bn} \implies

ln ( ( n m ) n b n m ) = n m ( n m ) n b n m = e n m \large \ln((\dfrac{n}{m})^n b^{n - m}) = n - m \implies (\dfrac{n}{m})^n b^{n - m} = e^{n - m}

b = ( m n ) n n m e a = ( m n ) m n m e \large \implies \large b = (\dfrac{m}{n})^{\frac{n}{n - m}}e \implies a = (\dfrac{m}{n})^{\frac{m}{n - m}} e

\implies

A : ( ( m n ) m n m e , ln ( ( m n ) 1 n m e 1 m ) \large A:((\dfrac{m}{n})^{\frac{m}{n - m}} e, \ln((\dfrac{m}{n})^{\frac{1}{n - m}} e^{\frac{1}{m}})

and,

B : ( ( m n ) n n m e , ln ( ( m n ) 1 n m e 1 n ) \large B:((\dfrac{m}{n})^{\frac{n}{n - m}} e, \ln((\dfrac{m}{n})^{\frac{1}{n - m}} e^{\frac{1}{n}}) .

Using the symmetry about the y y axis we have:

A : ( ( m n ) m n m e , ln ( ( m n ) 1 n m e 1 m ) \large A':(-(\dfrac{m}{n})^{\frac{m}{n - m}} e, \ln((\dfrac{m}{n})^{\frac{1}{n - m}} e^{\frac{1}{m}})

and,

B : ( ( m n ) n n m e , ln ( ( m n ) 1 n m e 1 n ) \large B':(-(\dfrac{m}{n})^{\frac{n}{n - m}} e, \ln((\dfrac{m}{n})^{\frac{1}{n - m}} e^{\frac{1}{n}}) .

and E : ( ( m n ) n n m e , ln ( ( m n ) 1 n m e 1 m ) \large E:((\dfrac{m}{n})^{\frac{n}{n - m}} e, \ln((\frac{m}{n})^{\frac{1}{n - m}} e^{\frac{1}{m}})

A A = 2 ( m n ) m n m , B B = 2 ( m n ) n m n \large AA' = 2(\dfrac{m}{n})^{\frac{m}{n - m}}, \:\ BB' = 2(\dfrac{m}{n})^{\frac{n}{m - n}} and E B = n m n m \large EB = \dfrac{n - m}{nm} \implies

A A A B B = ( m n ) m n m ( n + m n ) ( n m n m ) \large A_{AA'B'B} = (\dfrac{m}{n})^{\frac{m}{n - m}} (\dfrac{n + m}{n})(\dfrac{n - m}{nm}) .

ln ( α ) ln ( β α ) = 1 ln ( α 2 β ) = 0 β = α 2 \dfrac{\ln(\alpha)}{\ln(\dfrac{\beta}{\alpha})} = 1 \implies \ln(\dfrac{\alpha^2}{\beta}) = 0 \implies \beta = \alpha^2 and m = ln ( α ) m = \ln(\alpha) and n = ln ( β ) = 2 ln ( α ) A A A B B = 3 e 8 ln ( α ) = e 16 α = e 6 β = e 12 α β = e 18 = 65659969 n = \ln(\beta) = 2\ln(\alpha) \implies A_{AA'BB'} = \dfrac{3e}{8\ln(\alpha)} = \dfrac{e}{16} \implies \alpha = e^6 \implies \beta = e^{12} \implies \lfloor{\alpha\beta}\rfloor = \lfloor{e^{18}}\rfloor = \boxed{65659969} .

Incidentally, the slope m A B = g ( b ) = f ( a ) = 1 n ( m n ) n n m e = 1 e ( n m m n ) 1 n m = 1 e ( ( ln ( β ) ) ln ( α ) ( ln ( α ) ln ( β ) ) 1 ln ( β α ) \large m_{AB} = g'(b) = f'(a) = \dfrac{1}{n(\dfrac{m}{n})^{\frac{n}{n - m}} * e} = \dfrac{1}{e}(\dfrac{n^m}{m^n})^{\frac{1}{n - m}} = \dfrac{1}{e}(\dfrac{(\ln(\beta))^{\ln(\alpha)}}{(\ln(\alpha)^{\ln(\beta)}})^{\frac{1}{\ln(\frac{\beta}{\alpha})}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...