log of e z , z C e^z , z \in \mathbb{C}

Algebra Level 4

Compute the exact value of log 2 ( ln e e i π / 4 ) \large \log_2 \left( \ln \left| e^{e^{i \pi/4}} \right| \right) .


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hobart Pao
Jan 6, 2019

= log 2 ( ln e 2 2 + i 2 2 ) = \log_2 \left( \ln \left| e^{\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}} \right| \right) = log 2 ( ln e 2 2 ) = \log_2 \left( \ln e^{\frac{\sqrt{2}}{2}} \right) = log 2 2 1 = 0.5 = \log_2 \sqrt{2} - 1 = \boxed{-0.5}

To prove the second line, formally define e z = 0 k z k k ! e^z = \displaystyle \sum_{0 \leqslant k } \dfrac{z^k}{k!} (it's CONVENIENTLY written exponentially, but the definition itself is not yet exponential until you prove that the additive and multiplicative rules apply ), prove that e a + b = e a e b e^{a + b} = e^a e^b , and obtain that e z = e z e^{\overline{z}} = \overline{e^z} . This obtains e i y 2 = 1 |e^{iy}|^2 = 1 , hence e x + i y = e x |e^{x + iy} | = e^x . Here, z , a , b C , x , y R z, a, b \in \mathbb{C}, x, y \in \mathbb{R} .

Similar solution with @Hobart Pao 's, using Euler's formula as follows:

x = log 2 ( ln e e π 4 i ) By Euler’s formula: e θ i = cos θ + i sin θ = log 2 ( ln e 1 2 + i 2 ) = log 2 ( ln e 1 2 e i 2 ) = log 2 ( ln ( e 1 2 e i 2 ) ) Note that e θ i = cos θ + i sin θ = 1 = log 2 ( ln ( e 1 2 1 ) ) = log 2 ( 1 2 ) = log 2 ( 2 1 2 ) = 1 2 = 0.5 \begin{aligned} x & = \log_2\left(\ln \left|e^{\color{#3D99F6}e^{\frac \pi 4 i}} \right| \right) & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta \\ & = \log_2\left( \ln \left| e^{\color{#3D99F6}\frac 1{\sqrt 2}+ \frac i{\sqrt 2}} \right| \right) \\ & = \log_2\left( \ln \left| e^{\frac 1{\sqrt 2}} e^{\frac i{\sqrt 2}} \right| \right) \\ & = \log_2\left( \ln \left(e^{\frac 1{\sqrt 2}} \color{#3D99F6}\left|e^{\frac i{\sqrt 2}} \right|\right) \right) & \small \color{#3D99F6} \text{Note that } \left| e^{\theta i} \right| = |\cos \theta + i \sin \theta | = 1 \\ & = \log_2\left( \ln \left(e^{\frac 1{\sqrt 2}} \color{#3D99F6}\cdot 1 \right) \right) \\ & = \log_2\left( \frac 1{\sqrt 2} \right) \\ & = \log_2\left( 2^{-\frac 12} \right) \\ & = - \frac 12 = \boxed{-0.5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...