This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
ln ( x = 1 ∏ 8 9 tan x ∘ ) = ln ( tan 1 ∘ × tan 2 ∘ × ⋯ × tan 8 8 ∘ × tan 8 9 ∘ )
We know that tan x ∘ = cos x ∘ sin x ∘ . Therefore, we see that
ln ( tan 1 ∘ × tan 2 ∘ × ⋯ × tan 8 8 ∘ × tan 8 9 ∘ ) = ln ( cos 1 ∘ sin 1 ∘ × cos 2 ∘ sin 2 ∘ × ⋯ × cos 8 8 ∘ sin 8 8 ∘ × cos 8 9 ∘ sin 8 9 ∘ )
Note that cos θ = sin ( 2 π − θ ) ( Radians ) ⟹ cos x ∘ = sin ( 9 0 − x ∘ ) ( Degrees )
Hence, we have ln ( tan 1 ∘ × tan 2 ∘ × ⋯ × tan 8 8 ∘ × tan 8 9 ∘ ) = ln ( sin 8 9 ∘ sin 1 ∘ × sin 8 8 ∘ sin 2 ∘ × ⋯ × sin 2 ∘ sin 8 8 ∘ × sin 1 ∘ sin 8 9 ∘ )
Therefore, we see that ln ( x = 1 ∏ 8 9 tan x ∘ ) = ln 1 = 0
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Properties of Logarithms - Basic
ln ( x = 1 ∏ 8 9 tan x ∘ ) = ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 8 9 o )
Hence ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 8 9 o ) = ln ( tan 1 o × tan 2 o × tan 3 o . . . × cot 2 o × cot 1 o )
Here the turning point of tan's to cot is tan 4 5 o
Like this ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 4 4 o × tan 4 5 o × tan 4 6 o × tan 4 7 o × cot 2 o × cot 1 o )
Now tan 4 6 o can be written as cot 4 4 o , tan 4 7 o can be written as cot 4 3 o and so on.. Like this
ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 4 4 o × tan 4 5 o × cot 4 4 o × cot 4 3 o × . . . cot 2 o × cot 1 o )
Now all the cot's will be cut by tan's resulting in
ln tan 4 5 o
Now tan 4 5 o = 1 .
So ln 1 = 0