Log of product of tangent

Geometry Level 2

ln ( x = 1 89 tan x ) = ? \ln{\displaystyle\left(\prod^{89}_{x=1}{\tan{x^{\circ}}}\right)} = \, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Mar 26, 2017

Relevant wiki: Properties of Logarithms - Basic

ln ( x = 1 89 tan x ) = ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 8 9 o ) \ln{\displaystyle\left(\prod^{89}_{x=1}{\tan{x^{\circ}}}\right)} = \ln({\tan1^o \times \tan 2^o \times \tan 3^o... \times \tan 89^o})

Hence ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 8 9 o ) \ln({\tan1^o \times \tan 2^o \times \tan 3^o... \times \tan 89^o}) = ln ( tan 1 o × tan 2 o × tan 3 o . . . × cot 2 o × cot 1 o ) \ln({\tan1^o \times \tan 2^o \times \tan 3^o... \times \cot 2^o\times \cot 1^o})

Here the turning point of tan's to cot is tan 4 5 o \tan45^o

Like this ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 4 4 o × tan 4 5 o × tan 4 6 o × tan 4 7 o × cot 2 o × cot 1 o ) \ln({\tan1^o \times \tan 2^o \times \tan 3^o... \times \tan44^{o} \times \tan 45^{o} \times \tan 46^{o} \times \tan 47^{o} \times \cot 2^o\times \cot 1^o})

Now tan 4 6 o \tan 46^{o} can be written as cot 4 4 o \cot 44^{o} , tan 4 7 o \tan 47^{o} can be written as cot 4 3 o \cot 43^{o} and so on.. Like this

ln ( tan 1 o × tan 2 o × tan 3 o . . . × tan 4 4 o × tan 4 5 o × cot 4 4 o × cot 4 3 o × . . . cot 2 o × cot 1 o ) \ln({\tan1^o \times \tan 2^o \times \tan 3^o... \times \tan44^{o} \times \tan 45^{o} \times \cot 44^{o} \times \cot 43^{o} \times ... \cot 2^o\times \cot 1^o})

Now all the cot's will be cut by tan's resulting in

ln tan 4 5 o \ln{\tan 45^{o}}

Now tan 4 5 o = 1 \tan 45^o = 1 .

So ln 1 \ln{1} = 0 \boxed{0}

Akeel Howell
Apr 13, 2017

ln ( x = 1 89 tan x ) = ln ( tan 1 × tan 2 × × tan 8 8 × tan 8 9 ) \ln{\displaystyle\left(\prod^{89}_{x=1}{\tan{x^{\circ}}}\right)} = \, \ln{\displaystyle \left( \tan{1^{\circ}} \times \tan{2^{\circ}} \times \cdots \times \tan{88^{\circ}} \times \tan{89^{\circ}}\right)}

We know that tan x = sin x cos x \tan{x^{\circ}} = \dfrac{\sin{x^{\circ}}}{\cos{x^{\circ}}} . Therefore, we see that

ln ( tan 1 × tan 2 × × tan 8 8 × tan 8 9 ) = ln ( sin 1 cos 1 × sin 2 cos 2 × × sin 8 8 cos 8 8 × sin 8 9 cos 8 9 ) \displaystyle \ln{\left(\tan{1^{\circ}} \times \tan{2^{\circ}} \times \cdots \times \tan{88^{\circ}} \times \tan{89^{\circ}}\right)} = \ \ln{ \left( \dfrac{\sin{1^{\circ}}}{\cos{1^{\circ}}} \times \dfrac{\sin{2^{\circ}}}{\cos{2^{\circ}}} \times \cdots \times \dfrac{\sin{88^{\circ}}}{\cos{88^{\circ}}} \times \dfrac{\sin{89^{\circ}}}{\cos{89^{\circ}}} \right) }

Note that cos θ = sin ( π 2 θ ) ( Radians ) cos x = sin ( 90 x ) ( Degrees ) \cos{\theta} = \sin{\left( \dfrac{\pi}{2} - \theta \right)} \left( \color{#D61F06}{\text{Radians}} \right) \ \color{#333333}{}\implies \cos{x^{\circ}} = \sin{\left( 90 - x^{\circ} \right)} \left( \color{#3D99F6}{\text{Degrees}} \right)

Hence, we have ln ( tan 1 × tan 2 × × tan 8 8 × tan 8 9 ) = ln ( sin 1 sin 8 9 × sin 2 sin 8 8 × × sin 8 8 sin 2 × sin 8 9 sin 1 ) \displaystyle \ln{\left(\tan{1^{\circ}} \times \tan{2^{\circ}} \times \cdots \times \tan{88^{\circ}} \times \tan{89^{\circ}}\right)} = \ \ln{ \left( \dfrac{\sin{1^{\circ}}}{\sin{89^{\circ}}} \times \dfrac{\sin{2^{\circ}}}{\sin{88^{\circ}}} \times \cdots \times \dfrac{\sin{88^{\circ}}}{\sin{2^{\circ}}} \times \dfrac{\sin{89^{\circ}}}{\sin{1^{\circ}}} \right) }

Therefore, we see that ln ( x = 1 89 tan x ) = ln 1 = 0 \ln{\displaystyle\left(\prod^{89}_{x=1}{\tan{x^{\circ}}}\right)} = \, \ln1 = \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...