Log problem

Algebra Level 3

Follow directions in the photo


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Note first that in general log a b = 1 log b a \log_{a}b = \dfrac{1}{\log_{b}a} for a , b > 0 a, b \gt 0 .

So the expression becomes

log 3 ( 3 8 ) log 3 72 log 3 ( 3 72 ) log 3 8 = \log_{3}(3*8) *\log_{3}72 - \log_{3}(3*72) *\log_{3}8 =

( 1 + log 3 8 ) log 3 72 ( 1 + log 3 72 ) log 3 8 = (1 + \log_{3}8)*\log_{3}72 - (1 + \log_{3}72)*\log_{3}8 =

log 3 72 log 3 8 = log 3 72 8 = log 3 9 = 2 \log_{3}72 - \log_{3}8 = \log_{3} \frac{72}{8} = \log_{3}9 = \boxed{2} .

神 乐
Nov 17, 2014

loga b = 1/logb a

1.log3 24 x log 3 72 - log3 216 x log3 8

2.log3 (8x3) x log3 72 - log3 (8 x 3^3) x log3 8

3.(log3 8 + 1 ) x (log3 8 + 2) - (log3 8 + 3 ) (log3 8)

4.let log3 8 be x

5.(x+1) (x+2 ) - (x+3) (x)

6.x^2 +2x + x +2 - x^2 - 3x =2

Suraj Lal
Nov 18, 2014

convert everything in form of ( log 3 8 (\log _{ 3 }{ 8 } )

the expression becomes

[ ( log 3 ( 8 3 ) ) ( log 3 ( 8 3 2 ) ) ] [ ( log 3 ( 8 3 3 ) ) ( log 3 ( 8 ) ) ] [(\log _{ 3 }{ (8*3) } )*(\log _{ 3 }{ (8*{ 3 }^{ 2 }) } )]-[(\log _{ 3 }{ (8*{ 3 }^{ 3 }) } )*(\log _{ 3 }{ (8) } )]

the simplified expression is

[ ( log 3 8 + 1 ) ( log 3 8 + 2 ) ] [ ( log 3 8 + 3 ) ( log 3 8 ) ] [(\log _{ 3 }{ 8 } +1)*(\log _{ 3 }{ 8 } +2)]\quad -\quad [(\log _{ 3 }{ 8 } +3)*(\log _{ 3 }{ 8 } )]

now take ( log 3 8 ) = a (\log _{ 3 }{ 8 } ) = a

the expression becomes

( a + 1 ) ( a + 2 ) ( a + 3 ) ( a ) ) \left( a+1 \right) \left( a+2 \right) -\left( a+3 \right) \left( a \right) )

= a 2 + ( 3 a ) + 2 a 2 ( 3 a ) { a }^{ 2 }+\left( 3*a \right) +2-{ a }^{ 2 }-\left( 3*a \right)

= 2

Noel Lo
May 20, 2015

Bearing in mind the identity Brian made reference to in his working, we can rewrite the expression to be:

l o g 3 24 l o g 3 72 l o g 3 216 l o g 3 8 = l o g 3 24 ( l o g 3 72 ) ( l o g 3 ( 72 × 3 ) ) ( l o g 3 24 3 ) log_3 24 log_3 72 - log_3 216log_3 8 = log_3 24 (log_3 72) - (log_3 (72 \times 3))(log_3 \frac{24}{3})

= l o g 3 24 ( l o g 3 72 ) ( l o g 3 72 + 1 ) ( l o g 3 24 1 ) = l o g 3 72 l o g 3 24 + 1 = log_3 24 (log_3 72) - (log_3 72 +1)(log_3 24-1) = log_3 72 -log_3 24 + 1

= l o g 3 72 24 + 1 = l o g 3 3 + 1 = 1 + 1 = 2 = log_3 \frac{72}{24} + 1 = log_3 3 + 1 = 1+1 = \boxed{2}

Parv Maurya
Nov 24, 2014

just use base change property , assume log2 base 3 to be equal to a x and then just simplify , then x will get cancelled and 2 will remain. So Ans=>2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...