Log rules are interesting

Algebra Level pending

Let log 7 x m = 6 \log_{7x}m=6 , log 8 y m = 10 \log_{8y}m=10 , log 9 z m = 15 \log_{9z}m=15 , and log 504 x y z m 2016 = n \log_{504xyz}m^{2016}=n .

Find the value of n n .


The answer is 6048.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jun 3, 2016

log 7 x m = 6 \log_{7x}m=6

log m log 7 x = 6 \frac{ \log{m}}{\log{7x}} =6

log 7 x log m = 1 6 \frac{ \log{7x}}{\log{m}} =\frac{1}{6}


log 8 y m = 10 \log_{8y}m=10

log m log 8 y = 10 \frac{ \log{m}}{\log{8y}} =10

log 8 y log m = 1 10 \frac{ \log{8y}}{\log{m}} =\frac{1}{10}


log 9 z m = 15 \log_{9z}m=15

log m log 9 z = 15 \frac{ \log{m}}{\log{9z}} =15

log 9 z log m = 1 15 \frac{ \log{9z}}{\log{m}} =\frac{1}{15}


l o g 504 x y z m 2016 = n log_{504xyz}m^{2016}=n

2016 × log m log 7 x × 8 y × 9 z = n 2016 \times \frac{ \log{m}}{\log{7x \times 8y \times 9z}}=n

1 2016 × log 7 x × 8 y × 9 z log m = 1 n \frac{1}{2016} \times \frac{ \log{7x \times 8y \times 9z}}{\log{m}}= \frac{1}{n}

1 2016 × ( log 7 x log m + log 8 y log m + log 9 z log m ) = 1 n \frac{1}{2016} \times ( \frac{\log{7x}}{\log{m}}+\frac{ \log{8y}}{\log{m}}+\frac{ \log{9z}}{\log{m}})= \frac{1}{n}

1 2016 × ( 1 6 + 1 10 + 1 15 ) = 1 n \frac{1}{2016} \times ( \frac{1}{6}+\frac{1}{10}+\frac{1}{15})= \frac{1}{n}

1 2016 × 1 3 = 1 n \frac{1}{2016} \times \frac{1}{3}= \frac{1}{n}

1 6048 = 1 n \frac{1}{6048}= \frac{1}{n}

n = 6048 n=6048

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...