∫ 0 1 L i 2 ( 2 x ) lo g ( 1 − x ) d x = A + D lo g B C + G ζ ( E ) lo g F − ζ ( H ) − ζ ( I ) − J lo g ( K )
If the above equation holds true for positive integers A , B , C , D , E , F , G , H , I , J , K not necessarily distinct then find A + B + C + D + E + F + G + H + I + J + K .
Notations:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We start by proving some identities involving Harmonic Numbers :
Proof: We start by the generating function of the harmonic numbers,
n = 1 ∑ ∞ H n x n = − 1 − x ln ( 1 − x ) ∫ 0 x n = 1 ∑ ∞ H n x n − 1 = − ∫ 0 x x ln ( 1 − x ) d x − ∫ 0 x 1 − x ln ( 1 − x ) d x n = 1 ∑ ∞ n H n x n = L i 2 ( x ) + 2 ln 2 ( 1 − x )
as claimed.
Proof: It is easy to see that H 2 ( x ) = ∫ 0 x x H 1 ( x ) d x , which we use to derive :
∫ 0 x n = 1 ∑ ∞ n 2 H n x n − 1 d x = ∫ 0 x x L i 2 ( x ) d x + 2 1 ∫ 0 x 2 ln 2 ( 1 − x ) d x H 2 ( x ) = L i 3 ( x ) + 2 I
where I = ∫ 0 x 2 ln 2 ( 1 − x ) d x for which we evaluate the indefinite as,
∫ x ln 2 ( 1 − x ) d x = − ∫ 1 − t ln 2 t x → 1 − t = ln 2 t ln ( 1 − t ) − 2 ∫ t ln t ln ( 1 − t ) d t = ln 2 t ln ( 1 − t ) + 2 ln t L i 2 ( t ) − 2 L i 3 ( t ) + C
Now after substituting back t = 1 − x , the constant C = 2 ζ ( 3 ) can be determined by setting x = 0 and hence substituting back we have our final result as desired.
It is now easy to see by partial fractions that ,
n = 1 ∑ ∞ n 2 ( n + 1 ) H n x n = H 2 ( x ) − H 1 ( x ) + n = 1 ∑ ∞ n + 1 H n x n
where the last sum can be obtained as n = 1 ∑ ∞ n + 1 H n x n = x 1 ∫ 0 x n = 1 ∑ ∞ H n x n = 2 x ln 2 ( 1 − x )
Also it is easy to verify that,
n = 1 ∑ ∞ ( n 2 + n ) 2 x n = 2 lo g ( 1 − x ) + L i 2 ( x ) − 3 − x 2 lo g ( 1 − x ) + x L i 2 ( x )
Now coming back to the problem, for any real 0 < x < 1 ,
∫ 0 1 L i 2 ( x y ) lo g ( 1 − y ) d y = n = 1 ∑ ∞ n 2 x n ∫ 0 1 y n ln ( 1 − y ) d y = n = 1 ∑ ∞ n 2 x n n + 1 − H n + 1 = n = 1 ∑ ∞ n 2 ( n + 1 ) H n + 1 x n = n = 1 ∑ ∞ n 2 ( n + 1 ) H n x n + n = 1 ∑ ∞ n 2 ( n + 1 ) 2 x n x n = H 2 ( x ) − H 1 ( x ) + 2 x ln 2 ( 1 − x ) + 2 lo g ( 1 − x ) + L i 2 ( x ) − 3 − x 2 lo g ( 1 − x ) + x L i 2 ( x )
Now putting x = 2 1 we have ,
∫ 0 1 L i 2 ( 2 x ) ln ( 1 − x ) d x = 3 + 2 lo g 2 2 + 2 ζ ( 2 ) lo g 2 − ζ ( 3 ) − ζ ( 2 ) − 2 lo g 2 ≈ − 0 . 4 2 2 9 6 8 which makes the answer 2 4 .