Log with Dilog

Calculus Level 5

0 1 L i 2 ( x 2 ) log ( 1 x ) d x = A + log B C D + ζ ( E ) log F G ζ ( H ) ζ ( I ) J log ( K ) \int_0^1 {\rm Li}_2 \left(\dfrac{x}{2}\right)\log(1-x)\; dx = A+\dfrac{\log^B C}{D}+\dfrac{\zeta(E)\log F}{G}-\zeta(H)-\zeta(I)-J\log(K)

If the above equation holds true for positive integers A , B , C , D , E , F , G , H , I , J , K A,B,C,D,E,F,G,H,I,J,K not necessarily distinct then find A + B + C + D + E + F + G + H + I + J + K A+B+C+D+E+F+G+H+I+J+K .

Notations:


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We start by proving some identities involving Harmonic Numbers :

H 1 ( x ) = n = 1 H n n x n = L i 2 ( x ) + ln 2 ( 1 x ) 2 \displaystyle H_1(x) = \sum_{n=1}^\infty \dfrac{H_n}{n}x^n = {\rm Li}_2(x)+\dfrac{\ln^2 (1-x)}{2}

Proof: We start by the generating function of the harmonic numbers,

n = 1 H n x n = ln ( 1 x ) 1 x 0 x n = 1 H n x n 1 = 0 x ln ( 1 x ) x d x 0 x ln ( 1 x ) 1 x d x n = 1 H n n x n = L i 2 ( x ) + ln 2 ( 1 x ) 2 \displaystyle \begin{aligned} & \sum_{n=1}^\infty {\rm H}_{n} x^n = -\dfrac{\ln(1-x)}{1-x} \\ & \int_0^x \sum_{n=1}^\infty {\rm H}_{n} x^{n-1} = -\int_0^x \dfrac{\ln(1-x)}{x}\; dx -\int_0^x \dfrac{\ln(1-x)}{1-x}\; dx \\ & \sum_{n=1}^\infty \dfrac{{\rm H}_{n}}{n} x^n = {\rm Li}_2(x)+\dfrac{\ln^2 (1-x)}{2} \end{aligned}

as claimed.

H 2 ( x ) = n = 1 H n n 2 x n = L i 3 ( x ) L i 3 ( 1 x ) + ln ( 1 x ) L i 2 ( 1 x ) + 1 2 ln x ln 2 ( 1 x ) + ζ ( 3 ) \displaystyle H_2(x)=\sum_{n=1}^\infty \dfrac{{\rm H}_n}{n^2}x^n = {\rm Li}_3(x)-{\rm Li}_3(1-x)+\ln(1-x){\rm Li}_2(1-x)+\dfrac{1}{2}\ln x\ln^2 (1-x)+\zeta(3)

Proof: It is easy to see that H 2 ( x ) = 0 x H 1 ( x ) x d x \displaystyle H_2(x)=\int_0^x \dfrac{H_1(x)}{x}\; dx , which we use to derive :

0 x n = 1 H n n 2 x n 1 d x = 0 x L i 2 ( x ) x d x + 1 2 0 x ln 2 ( 1 x ) 2 d x H 2 ( x ) = L i 3 ( x ) + I 2 \displaystyle \begin{aligned} &\int_0^x \sum_{n=1}^\infty \dfrac{{\rm H}_n}{n^2}x^{n-1}\; dx = \int_{0}^x \dfrac{{\rm Li}_2(x)}{x}\; dx +\dfrac{1}{2}\int_0^x \dfrac{\ln^2 (1-x)}{2}\; dx \\ & H_2(x) = {\rm Li}_3(x)+\dfrac{I}{2}\end{aligned}

where I = 0 x ln 2 ( 1 x ) 2 d x \displaystyle I =\int_0^x \dfrac{\ln^2 (1-x)}{2}\; dx for which we evaluate the indefinite as,

ln 2 ( 1 x ) x d x = ln 2 t 1 t x 1 t = ln 2 t ln ( 1 t ) 2 ln t ln ( 1 t ) t d t = ln 2 t ln ( 1 t ) + 2 ln t L i 2 ( t ) 2 L i 3 ( t ) + C \displaystyle \begin{aligned} \int \dfrac{\ln^2(1-x)}{x}\; dx & = -\int \dfrac{\ln^2 t}{1-t} \quad x\to 1-t \\ &= \ln^2 t\ln(1-t)-2\int \dfrac{\ln t\ln(1-t)}{t}\; dt \\ &=\ln^2 t\ln(1-t)+2\ln t {\rm Li}_2(t)-2{\rm Li}_3(t)+C \end{aligned}

Now after substituting back t = 1 x t=1-x , the constant C = 2 ζ ( 3 ) C=2\zeta(3) can be determined by setting x = 0 x=0 and hence substituting back we have our final result as desired.

It is now easy to see by partial fractions that ,

n = 1 H n n 2 ( n + 1 ) x n = H 2 ( x ) H 1 ( x ) + n = 1 H n n + 1 x n \displaystyle \sum_{n=1}^\infty \dfrac{{\rm H}_n}{n^2 (n+1)}x^n = H_2(x)-H_1(x)+\sum_{n=1}^\infty\dfrac{{\rm H}_n}{n+1}x^n

where the last sum can be obtained as n = 1 H n n + 1 x n = 1 x 0 x n = 1 H n x n = ln 2 ( 1 x ) 2 x \displaystyle \begin{aligned}\sum_{n=1}^\infty\dfrac{{\rm H}_n}{n+1}x^n &= \dfrac{1}{x}\int_0^x \sum_{n=1}^{\infty} {\rm H_n}x^n &= \dfrac{\ln^2 (1-x)}{2x}\end{aligned}

Also it is easy to verify that,

n = 1 x n ( n 2 + n ) 2 = 2 log ( 1 x ) + L i 2 ( x ) 3 2 log ( 1 x ) x + L i 2 ( x ) x \displaystyle \sum_{n=1}^\infty \dfrac{x^n}{(n^2+n)^2}=2\log(1-x)+{\rm Li}_2(x)-3-\dfrac{2\log(1-x)}{x}+\dfrac{{\rm Li}_2(x)}{x}

Now coming back to the problem, for any real 0 < x < 1 0<x<1 ,

0 1 L i 2 ( x y ) log ( 1 y ) d y = n = 1 x n n 2 0 1 y n ln ( 1 y ) d y = n = 1 x n n 2 H n + 1 n + 1 = n = 1 H n + 1 n 2 ( n + 1 ) x n = n = 1 H n n 2 ( n + 1 ) x n + n = 1 x n n 2 ( n + 1 ) 2 x n = H 2 ( x ) H 1 ( x ) + ln 2 ( 1 x ) 2 x + 2 log ( 1 x ) + L i 2 ( x ) 3 2 log ( 1 x ) x + L i 2 ( x ) x \displaystyle \begin{aligned} \int_0^1 {\rm Li}_2 (xy)\log(1-y)\; dy &= \sum_{n=1}^\infty \dfrac{x^n}{n^2} \int_0^1 y^n \ln(1-y)\; dy \\ &= \sum_{n=1}^\infty \dfrac{x^n}{n^2} \dfrac{-{\rm H}_{n+1}}{n+1} \\ &= \sum_{n=1}^\infty \dfrac{{\rm H}_{n+1}}{n^2(n+1)}x^n \\ &= \sum_{n=1}^\infty \dfrac{{\rm H}_{n}}{n^2(n+1)}x^n+\sum_{n=1}^\infty \dfrac{x^n}{n^2(n+1)^2}x^n \\ & = H_2(x)-H_1(x)+\dfrac{\ln^2 (1-x)}{2x}+2\log(1-x)+{\rm Li}_2(x)-3-\dfrac{2\log(1-x)}{x}+\dfrac{{\rm Li}_2(x)}{x}\end{aligned}

Now putting x = 1 2 x=\dfrac12 we have ,

0 1 L i 2 ( x 2 ) ln ( 1 x ) d x = 3 + log 2 2 2 + ζ ( 2 ) log 2 2 ζ ( 3 ) ζ ( 2 ) 2 log 2 0.422968 \displaystyle \int_0^1 {\rm Li}_2\left(\dfrac{x}{2}\right)\ln(1-x)\; dx = 3+\dfrac{\log^2 2}{2}+\dfrac{\zeta(2)\log 2}{2}-\zeta(3)-\zeta(2)-2\log 2\approx -0.422968 which makes the answer 24 \boxed{24} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...