Log of 89 Tangents

Geometry Level 1

log ( tan 1 ) + log ( tan 2 ) + + log ( tan 8 9 ) = ? \log(\tan 1^{\circ}) + \log(\tan 2^{\circ}) +\cdots + \log( \tan 89^{\circ}) =\, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Mesbah Tanvir
Dec 29, 2013

log(tanx) + log(tany) = 0 [where x , y both are integer & ( x + y = 90 )] and log(tan45) = 0 ; now try yourself .

Awesome!

Vasavi GS - 7 years, 5 months ago

x and y do not have to be integer and this would still work :)

Kobe Cheung - 5 years, 3 months ago

Log in to reply

log(tanx) + log(tany) =log(tanx * tany) =log(tanx * tan(90-y)) as x+y=90; =log(tanx*cotx) =log(1) =0 so for any real x , y .

but in this ques only integer are used for this reason i was state as integer.

Mesbah Tanvir - 5 years, 3 months ago
Prasun Biswas
Feb 13, 2014

We should know the formulas tan ( 9 0 A ) = cot A \tan (90^{\circ}-A^{\circ})=\cot A^{\circ} , log P + log Q = log ( P × Q ) \log P + \log Q = \log (P\times Q) . Also, you must know that tan θ × cot θ = 1 \tan \theta \times \cot \theta = 1 , tan 4 5 = 1 \tan 45^{\circ} = 1 and log 1 = 0 \log 1=0 . Now ----

log ( tan 1 ) + log ( tan 2 ) + . . . . . . . . + log ( tan 8 9 ) \log (\tan 1^{\circ})+\log (\tan 2^{\circ})+ ........ +\log (\tan 89^{\circ})

= log ( tan 1 ) + log ( tan 2 ) + . . . . . + log ( tan 4 5 ) + log ( tan ( 9 0 4 4 ) ) + log ( tan ( 9 0 4 3 ) ) + . . . . . . . + log ( tan ( 9 0 1 ) ) =\log (\tan 1^{\circ})+\log (\tan 2^{\circ})+ ..... +\log (\tan 45^{\circ})+\log (\tan (90^{\circ}-44^{\circ}))+\log (\tan (90^{\circ}-43^{\circ}))+ ....... +\log (\tan (90^{\circ}-1^{\circ}))

= log ( tan 1 ) + log ( tan 2 ) + . . . . . + log 1 + log ( cot 4 4 ) + log ( cot 4 3 ) + . . . . . . + log ( cot 1 ) =\log (\tan 1^{\circ})+\log (\tan 2^{\circ})+ ..... +\log 1 +\log (\cot 44^{\circ})+\log (\cot 43^{\circ})+ ...... +\log (\cot 1^{\circ})

= log ( tan 1 × cot 1 ) + log ( tan 2 × cot 2 ) + . . . . . . + log ( tan 4 4 × cot 4 4 ) + log 1 =\log (\tan 1^{\circ}\times \cot 1^{\circ})+\log (\tan 2^{\circ}\times \cot 2^{\circ})+ ...... +\log (\tan 44^{\circ}\times \cot 44^{\circ})+\log 1

= log 1 + log 1 + . . . . . . . . + log 1 = 0 + 0 + . . . . . + 0 = 0 =\log 1 + \log 1 + ........ + \log 1 = 0+0+ ..... +0 = \boxed{0}

2ª line: wrong: log(tan(90º-44º)) ... correct: log(cot(90º-44º)) + log(cot(90º-43º)) + log(cot(90º-42º)) +....+ ...

Chacon Alexandre - 1 year, 10 months ago

Log in to reply

Please recheck your work: this solution is correct. Written succinctly, the solution is simply: k = 1 89 log ( tan k ) = k = 1 44 log ( tan k ) + k = 46 89 log ( tan k ) + log ( tan 4 5 ) = k = 1 44 log ( tan k ) + k = 1 44 log ( tan ( 9 0 k ) ) + log 1 = k = 1 44 [ log ( tan k ) + log ( cot k ) ] + log 1 = k = 1 44 log ( tan k × cot k ) + log 1 = 45 × log 1 = 0 \begin{aligned}\sum_{k=1}^{89}\log(\tan k^\circ)&=\sum_{k=1}^{44}\log(\tan k^\circ)+\sum_{k=46}^{89}\log(\tan k^\circ)+\log(\tan 45^\circ)\\&=\sum_{k=1}^{44}\log(\tan k^\circ)+\sum_{k=1}^{44}\log(\tan(90^\circ-k^\circ))+\log 1\\&=\sum_{k=1}^{44}[\log(\tan k^\circ)+\log(\cot k^\circ)]+\log 1\\&=\sum_{k=1}^{44}\log(\tan k^\circ\times\cot k^\circ)+\log 1=45\times\log 1=0\end{aligned}

Prasun Biswas - 1 year, 4 months ago
Eduardo Petry
Dec 31, 2013

I think you meant log ( tan 1 ) + log ( tan 2 ) + + log ( tan 8 9 ) \displaystyle \log (\tan 1^\circ)+\log (\tan 2^\circ)+\ldots+\log (\tan 89^\circ) .

Anyway, apply the logarithm sum rule log a + log b = log ( a b ) \displaystyle \log a + \log b = \log (ab) to find log ( tan 1 t a n 2 t a n 8 9 ) \displaystyle \log (\tan 1^\circ*tan 2^\circ*\ldots*tan 89^\circ)

tan α = cot ( 9 0 α ) \displaystyle \tan \alpha=\cot (90^\circ-\alpha) \rightarrow the tangent of an angle is equal to the cotangent of its complementary

So we have log ( cot 8 9 c o t 8 8 t a n 8 9 ) \displaystyle \log (\cot 89^\circ*cot 88^\circ*\ldots*tan 89^\circ)

Since tan α cot α = 1 \displaystyle \tan \alpha*\cot \alpha = 1 , we find log ( cot 8 9 c o t 8 8 t a n 8 9 ) = log ( 1 ) = 0 \displaystyle \log (\cot 89^\circ*cot 88^\circ*\ldots*tan 89^\circ)=\log (1)=\boxed{0}

Yash Jakhotiya
Dec 30, 2013

The reader knows that log(a)+log(b)=log(ab). We also know that tan(a)=cot(90-a) and tan(a).cot(a)=1 So, applying this in the problem, we get log(tan1.cot1.tan2.cot2.............tan45), (numbers are in degrees.) this turns out to be log(1) which is equal to "0"

DreamRunner Moshi
Dec 31, 2013

here log ( tan 1 0 ) + log ( tan 89 0 ) \log({\tan{1^{0}}}) + \log({\tan{{89}^{0}}}) = log ( tan 1 0 × tan 89 0 ) =\log({\tan{1^{0}}}\times \tan{{89}^{0}}) = log ( tan ( 1 0 ) + tan ( 89 0 ) tan 90 0 + 1 ) =\log({\frac{\tan({1^{0}})+\tan({89}^{0})}{\tan{{90}^{0}}}}+1) = log ( 1 ) =\log({1}) = 0 ={0}

And we can do the same thing with second term from beginning with the second term from last and third and so on. Now there are 1+89 = 90 terms and we can make 45 couples and each couple makes value of 0. So, sum up all the values, final answer is 0 \boxed{0}

we know tan ( A + B ) = tan ( A ) + tan ( B ) 1 tan ( A ) t a n ( B ) \tan{(A+B)} \space =\space \frac{\tan{(A)}+\tan{(B)}}{1-\tan{(A)}tan{(B)}}

So, tan ( A ) t a n ( B ) = tan ( A ) + tan ( B ) tan ( A + B ) + 1 \tan{(A)}tan{(B)}\space=\space\frac{\tan{(A)}+\tan{(B)}}{\tan{(A+B)} }+1

be careful, tan 90 is undefined, it is better not to do it if limit is not taken

Kobe Cheung - 5 years, 3 months ago

log1=0

Vishruti Ganesh
Feb 14, 2016

Since this is the addition of logarithms, an easy way to solve this is to first multiply all of the arguments. This would be log(tan1tan2tan3...tan89). Then, the tangent can be written as sine over cosine. This gives us log(sin1sin2sin3..sin89/cos1cos2cos3..cos89). Since sinx = cos(90-x), the terms can be cancelled out giving us log(1) which equals zero.

Rohan Verma
Oct 24, 2014

Best way to solve it is take log common and all the tan's inside will multiply and the result will be 1 like tan1 tan89=tan1 cot1=1 similarly solve all inside the bracket the we get the fianl value as log1 which is equal to 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...