log x y z w \log_{xyz} w

Algebra Level 3

If x > 1 x>1 , y > 1 y>1 , z > 1 z>1 , w > 0 w>0 , and log x w = 20 , log y w = 36 , log x y z w = 10 , \log_x w=20, \log_y w=36, \log_{xyz} w=10, what is the value of log z w ? \log_z w?

40 35 45 30

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Paula Hogrefe
Oct 25, 2016

If log x w = 20 \log_x w = 20 then x 20 = w x^{20}= w .

So y 36 = w y^{36} = w and ( x y z ) 10 = x 10 y 10 z 10 = w (xyz)^{10} = x^{10} y^{10}z^{10} = w .

Setting x 20 = y 36 x^{20}=y^{36} , we get x 10 = y 18 x^{10}=y^{18} .

We can set y 36 = x 10 y 10 z 10 = y 18 y 10 z 10 = y 28 z 10 y^{36}=x^{10}y^{10}z^{10}=y^{18}y^{10}z^{10}=y^{28}z^{10} .

This gives y 36 = y 28 z 10 y^{36} =y^{28}z^{10} .

Solving gives y 8 = z 10 y^8=z^{10} .

log z y 8 = log z z 10 \log_z y^8 = \log_z z^{10}

8 l o g z y 8 = 10 8log_z y^8 = 10 l o g z y = 5 / 4 log_z y = 5/4

Since w = y 36 w=y^{36} , log z y 36 = 36 log z y = 36 5 / 4 = 45 \log_z y^{36} = 36\log_z y= 36*5/4=45 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...