( lo g b 2 ) 0 ( lo g b 5 2 0 ) + ( lo g b 2 ) 1 ( lo g b 5 2 1 ) + ( lo g b 2 ) 2 ( lo g b 5 2 2 ) + ⋯
If b = 1 0 0 , what is the infinite sum above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
+1
b = 1 0 0
lo g b 4 + lo g b 2 5 = lo g b 1 0 0 = lo g b b
⟹ 2 lo g b 2 + 2 lo g b 5 = 1
⟹ 2 lo g b 5 = 1 − 2 lo g b 2
At the last step, how does 1 - 2log b 2 become 2log b 5?
Log in to reply
1 − 2 l o g b 2 = l o g b b − l o g b 4 = l o g b 4 b = l o g b 4 1 0 0 = l o g b 5 2 = 2 l o g b 5
Hi, frankly I had never thought that such a question of logarithms can be made .
Let S be the infinite sum
S = n = 0 ∑ ∞ ( lo g 1 0 0 2 ) n ( lo g 1 0 0 5 2 n )
S = n = 0 ∑ ∞ ( lo g 1 0 0 2 ) n ( 2 n lo g 1 0 0 5 )
S = ( lo g 1 0 0 5 ) n = 0 ∑ ∞ 2 n ( lo g 1 0 0 2 ) n
S = ( lo g 1 0 0 5 ) n = 0 ∑ ∞ ( 2 lo g 1 0 0 2 ) n
S = ( lo g 1 0 0 5 ) n = 0 ∑ ∞ ( lo g 1 0 0 4 ) n
n = 0 ∑ ∞ ( lo g 1 0 0 4 ) n is geometric with r = lo g 1 0 0 4
S = lo g 1 0 0 5 1 − lo g 1 0 0 4 1
S = ln 1 0 0 ln 5 ⋅ 1 − ln 1 0 0 ln 4 1
S = ln 1 0 0 − ln 4 ln 5
S = ln 2 5 ln 5
S = ln 5 ln 2 5 1
S = lo g 5 2 5 1
S = 2 1
Problem Loading...
Note Loading...
Set Loading...
We rewrite the infinite sum in sigma form:
n = 0 ∑ ∞ ( lo g b 2 ) n ( lo g b 5 2 n )
Using the properties of logarithms and the formula of infinite GP, we obtain
n = 0 ∑ ∞ ( lo g b 2 ) n ( lo g b 5 2 n ) = lo g b 5 n = 0 ∑ ∞ ( 2 lo g b 2 ) n = 1 − 2 lo g b 2 lo g b 5 = 2 lo g b 5 lo g b 5 = 0 . 5