Logariddim

Algebra Level 3

( log b 2 ) 0 ( log b 5 2 0 ) + ( log b 2 ) 1 ( log b 5 2 1 ) + ( log b 2 ) 2 ( log b 5 2 2 ) + (\log_{b} 2)^{0}\left(\log_{b} 5^{2^{0}}\right) + (\log_{b} 2)^{1}\left(\log_{b} 5^{2^{1}}\right) + (\log_{b} 2)^{2}\left(\log_{b} 5^{2^{2}}\right) + \cdots

If b = 100 , b = 100, what is the infinite sum above?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jake Lai
Feb 14, 2015

We rewrite the infinite sum in sigma form:

n = 0 ( log b 2 ) n ( log b 5 2 n ) \sum_{n=0}^{\infty} (\log_{b} 2)^{n}(\log_{b} 5^{2^{n}})

Using the properties of logarithms and the formula of infinite GP, we obtain

n = 0 ( log b 2 ) n ( log b 5 2 n ) = log b 5 n = 0 ( 2 log b 2 ) n = log b 5 1 2 log b 2 = log b 5 2 log b 5 = 0.5 \sum_{n=0}^{\infty} (\log_{b} 2)^{n}(\log_{b} 5^{2^{n}}) = \log_{b} 5 \sum_{n=0}^{\infty} (2\log_{b} 2)^{n} = \frac{\log_{b} 5}{1-2\log_{b} 2} = \frac{\log_{b} 5}{2\log_{b} 5} = \boxed{0.5}

+1

b = 100 b = 100

log b 4 + log b 25 = log b 100 = log b b \log_{b} 4 + \log_{b} 25 = \log_{b} 100 = \log_{b} b

2 log b 2 + 2 log b 5 = 1 \implies 2\log_{b} 2 + 2\log_{b} 5 = 1

2 log b 5 = 1 2 log b 2 \implies 2\log_{b} 5 = 1 - 2\log_{b} 2

U Z - 6 years, 3 months ago

At the last step, how does 1 - 2log b _b 2 become 2log b _b 5?

Caleb Hanger - 5 years, 6 months ago

Log in to reply

1 2 l o g b 2 = l o g b b l o g b 4 = l o g b b 4 = l o g b 100 4 = l o g b 5 2 = 2 l o g b 5 1 - 2log_b 2=log_b b - log_b 4 = log_b \frac {b}{4} = log_b \frac {100}{4} = log_b 5^2 = 2log_b 5

Kai Ott - 4 years, 12 months ago

Hi, frankly I had never thought that such a question of logarithms can be made .

A Former Brilliant Member - 6 years, 3 months ago
Victor Blancard
May 24, 2016

Let S be the infinite sum \text{Let } S \text{ be the infinite sum}

S = n = 0 ( log 100 2 ) n ( log 100 5 2 n ) S=\displaystyle\sum_{n=0}^\infty{(\log_{100} 2)}^n(\log_{100} {5^{2^n}})

S = n = 0 ( log 100 2 ) n ( 2 n log 100 5 ) S=\displaystyle\sum_{n=0}^\infty{(\log_{100} 2)}^n(2^n\log_{100} 5)

S = ( log 100 5 ) n = 0 2 n ( log 100 2 ) n S=(\log_{100} 5) \displaystyle\sum_{n=0}^\infty{2^n(\log_{100} 2)}^n

S = ( log 100 5 ) n = 0 ( 2 log 100 2 ) n S=(\log_{100} 5) \displaystyle\sum_{n=0}^\infty{(2\log_{100} 2)}^n

S = ( log 100 5 ) n = 0 ( log 100 4 ) n S=(\log_{100} 5) \displaystyle\sum_{n=0}^\infty{(\log_{100} 4)}^n

n = 0 ( log 100 4 ) n is geometric with r = log 100 4 \displaystyle\sum_{n=0}^\infty{(\log_{100} 4)}^n \text{ is geometric } \\ \text{with }r=\log_{100} 4

S = log 100 5 1 1 log 100 4 S=\log_{100} 5\frac{1}{1-\log_{100} 4}

S = ln 5 ln 100 1 1 ln 4 ln 100 S=\frac{\ln 5}{\ln {100}} \cdot \frac{1}{1-\frac{\ln 4}{\ln {100}}}

S = ln 5 ln 100 ln 4 S=\frac{\ln 5}{\ln {100} - \ln 4}

S = ln 5 ln 25 S=\frac{\ln 5}{\ln {25}}

S = 1 ln 25 ln 5 S=\frac{1}{\frac{\ln {25}}{\ln 5}}

S = 1 log 5 25 S=\frac{1}{\log_5 {25}}

S = 1 2 \boxed{S=\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...