Logarithm 1

Algebra Level 3

log 2.5 ( 1 3 + 1 3 2 + 1 3 3 + ) \log_{2.5} \left( \frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \right)

If α \alpha is equal to the expression above, evaluate 0.1 6 α 0.16^{\alpha} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sai Ram
Sep 6, 2015

The given expression is log 2.5 ( 1 3 + 1 3 2 + 1 3 3 . . . ) \log_{2.5} \left( \frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}... \right)

Consider ( 1 3 + 1 3 2 + 1 3 3 + . . . . . ) \left (\dfrac{1}{3} + \dfrac{1}{3^2} + \dfrac{1}{3^3}+ ..... \right)

It is an infinite G.P where a = 1 3 , r = 1 3 a=\dfrac{1}{3} , r = \dfrac{1}{3}

Now formula for infinite terms of a G.P is S = a 1 r . S = \dfrac{a}{1-r}.

Plugging the respective values , we get S = 1 2 S = \dfrac{1}{2}

Therefore

log 2.5 ( 1 3 + 1 3 2 + 1 3 3 . . . ) = log 2.5 ( 1 2 ) = log ( 0.4 ) 1 ( 2 1 ) = log 0.4 2. \log_{2.5} \left( \dfrac{1}{3}+\dfrac{1}{3^{2}}+\dfrac{1}{3^{3}}... \right)= \log_{2.5}{\left(\dfrac{1}{2}\right)}=\log_{(0.4)^{-1}}{(2^{-1})}=\log_{0.4}{2}.

Now α = log 0.4 2 \alpha =\log_{0.4}{2}

( 0.16 ) α = ( 0.16 ) log 0.4 2 = ( 0.4 ) 2 × log 0.4 2 = ( 0.4 ) log 0.4 2 2 = ( 0.4 ) log 0.4 4 (0.16)^{\alpha} = (0.16)^{\Large \log_{0.4}{2}}= (0.4)^{\Large2 \times \log_{0.4}{2}} = (0.4)^{\Large \log_{0.4}{2^2}}=(0.4)^{\Large \log_{0.4}{4}}

= 4 =\boxed{4}

Akash Kolaventy
Jan 13, 2015

First consider the part inside the logarithm. Let x = 1/3 + 1/3^2 + 1/3^3 + ....... Using infinite GP sum formula, 1/3 + 1/3^2 + 1/3^3 + ..... = 1/3//1-1/3 =1/2.
Therefore, α = log2.5 (1/2). Using logarithmic property, (5/2)^α = 1/2
=> (2/5)^α = 2. Now, 0.16 = 16/100 = 4/25 = (2/5)^2
=>(0.16)^α = (2/5)2α = 2^2 = 4


Use L A T E X LATEX

Sai Ram - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...