LOGARITHM

Algebra Level 2

Evaluate: ( log 2 3 ) ( log 3 4 ) ( log 4 5 ) . . . ( log 2046 2047 ) ( log 2047 2048 ) (\log _{ 2 }{ 3) } (\log _{ 3 }{ 4) } (\log _{ 4 }{ 5 } )...(\log _{ 2046 }{ 2047) } (\log _{ 2047 }{ 2048) }


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudoku Subbu
Apr 29, 2015

First we consider l o g 2 3 × l o g 3 4 × l o g 4 5 × . . . l o g 2047 2048 log_{2}3\times log_{3}4\times log_{4}5\times. . . log_{2047}2048 = l o g 3 l o g 2 × l o g 4 l o g 3 × l o g 5 l o g 4 . . . . 2048 2047 =\frac{log 3}{log 2}\times\frac{log 4}{log 3}\times\frac{log 5}{log 4} . . . . \frac{2048}{2047} = l o g 2048 l o g 2 =\frac{log 2048}{log 2} = l o g 2 2048 =log_{2} 2048 = l o g 2 2 11 =log_{2} 2^{11} = 11 × l o g 2 2 =11\times log_{2} 2 = 11 × 1 = 11 =11\times1=11

How do you know that log 2048 log 2 = log 2 2048 ? \displaystyle \frac { \log 2048 } { \log 2 } = \log _ { 2 } 2048?

There should be some proof.

. . - 3 months ago
Ramiel To-ong
Jun 8, 2015

that will result to log2048/log2 = 11

How do know that?

log 2 3 × log 3 4 × log 2047 2048 = log 2048 log 2 = 11 \displaystyle \log _ { 2 } 3 \times \log _ { 3 } 4 \times \cdots \log _ { 2047 } 2048 = \frac { \log 2048 } { \log 2 } = 11 .

. . - 3 months ago
Azadali Jivani
Apr 25, 2015

(log3/log2)(log4/log3)(log5/Log4)........(log2047/log2046)(log2048/log2047)
....after cancellation of log3, log4, log5 & so on. only remain as follows
=log2048/log2=11 (Ans.)

There is no proof that log 2048 log 2 = 11 \displaystyle \frac { \log 2048 } { \log 2 } = 11 .

. . - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...