Logarithm 11

Calculus Level 3

f ( x , y , z ) = ln ( y x ) z g ( x , y ) = e x 2 y 2 A = [ g ( 0 , 1 ) f ( 0 , 3 , 5 ) g ( 0 , 1 ) f ( 4 , e , 2 ) g ( 0 , 0 ) f ( 3 , e 3 , 3 ) g ( 1 , 0 ) f ( 7 , 1 , 1 ) g ( 1 , 0 ) ] \begin{aligned} f(x,y,z) & = \frac{\ln(y^x)}{z} \\ g(x,y) & = e^{- x^2 - y^2} \\ A & = \begin{bmatrix} g(0,1) & f(0,3,5) & g(0,-1) \\ f(4,e,2) & g(0,0) & f(3,e^3,3) \\ g(1,0) & f(7,1,1) & g(-1,0) \\ \end{bmatrix} \end{aligned}

Given the functions f f and g g and matrix A A above, find the determinant of A A .

-1 e e 1 0 1 e \frac{1}{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 17, 2017

Computing the appropriate values of the matrix A yields:

A = [ e 1 0 e 1 2 1 3 e 1 0 e 1 ] \begin{aligned} A & = \begin{bmatrix} e^{-1} & 0 & e^{-1} \\ 2 & 1 & 3 \\ e^{-1} & 0 & e^{-1} \\ \end{bmatrix} \end{aligned}

Upon observation, the third column vector equals the sum of the first and the second column vectors (i.e. a linear combination). Since A does not have full rank, its determinant is singular d e t ( A ) = 0 . \Rightarrow det(A) = \boxed{0}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...