Given the functions
f ( x , y ) = 2 x e − ( 2 x 2 + y 2 )
g ( z ) = lo g 2 ( 5 z )
and the matrices
A = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ ∂ x ∂ f ( x , y ) ∣ ∣ ∣ ∣ ( 0 , 0 ) ∂ y ∂ x ∂ 2 f ( x , y ) ∣ ∣ ∣ ∣ ( 0 , 0 ) ∂ x ∂ y ∂ 2 f ( x , y ) ∣ ∣ ∣ ∣ ( 1 , 1 ) ∂ y ∂ f ( x , y ) ∣ ∣ ∣ ∣ ( 1 , 1 ) ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
B = [ g ′ ( 1 ) g ′ ′ ( 1 ) g ′ ( 2 ) g ′ ′ ( 2 ) ]
find k = ln ( 2 ) . d e t A d e t B
Notations:
with respect to x at the point ( a , b , f ( a , b ) )
with respect to y at the point ( a , b , f ( a , b ) )
with respect to y and x at the point ( a , b , f ( a , b ) )
with respect to x and y at the point ( a , b , f ( a , b ) )
g ′ ( a ) denotes the first derivative of g ( z ) at the point ( a , g ( a ) )
g ′ ′ ( a ) denotes the second derivative of g ( z ) at the point ( a , g ( a ) )
lo g 2 ( ⋅ ) denotes the binary logarithm of ( ⋅ )
ln ( ⋅ ) denotes the natural logarithm of ( ⋅ )
d e t A denotes the determinant of matrix A
d e t B denotes the determinant of matrix B
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
For the matrix A :
f x = 2 1 − x 2 ⋅ e − ( x 2 + y 2 ) / 2 ⇒ f x ∣ ( x , y ) = ( 0 , 0 ) = 1 / 2 ;
f x y = 2 y ( x 2 − 1 ) ⋅ e − ( x 2 + y 2 ) / 2 ⇒ f x y ∣ ( x , y ) = ( 1 , 1 ) = 0 ;
f y x = y ( x 2 − 1 ) ⋅ e − ( x 2 + y 2 ) / 2 ⇒ f y x ∣ ( x , y ) = ( 0 , 0 ) = 0 ;
f y = − 2 x y ⋅ e − ( x 2 + y 2 ) / 2 ⇒ f y ∣ ( x , y ) = ( 1 , 1 ) = − 2 e 1
or A = [ 2 1 0 0 − 2 e 1 ] .
For the matrix B :
g ′ ( x ) = x ln ( 2 ) 1 and g ′ ′ ( x ) = − x 2 ln ( 2 ) 1
or B = [ ln ( 2 ) 1 − ln ( 2 ) 1 2 ln ( 2 ) 1 − 4 ln ( 2 ) 1 ] .
Finally:
k = ln ( 2 ) ⋅ d e t ( A ) d e t ( B ) = ln ( 2 ) ⋅ [ 4 ln 2 ( 2 ) 1 ÷ − 4 e 1 ] = ln ( 2 ) ⋅ − ln 2 ( 2 ) e = − ln ( 2 ) e .