Logarithm 12

Calculus Level 4

Given the functions

f ( x , y ) = x 2 e ( x 2 + y 2 2 ) f(x,y) = \frac{x}{2} e^{ - \big(\frac{x^2 + y^2}{2} \big)}

g ( z ) = log 2 ( z 5 ) g(z) = \log_2 (\frac{z}{5})

and the matrices

A = [ f ( x , y ) x ( 0 , 0 ) 2 f ( x , y ) x y ( 1 , 1 ) 2 f ( x , y ) y x ( 0 , 0 ) f ( x , y ) y ( 1 , 1 ) ] \begin{bmatrix} \\ {{\partial f(x,y) \over \partial x} \bigg|_{(0,0)}} & {{\partial^2 f(x,y) \over \partial x \partial y} \bigg|_{(1,1)}} \\ \\ {{\partial^2 f(x,y) \over \partial y \partial x} \bigg|_{(0,0)}} & {{\partial f(x,y) \over \partial y} \bigg|_{(1,1)}} \\ \\ \end{bmatrix}

B = [ g ( 1 ) g ( 2 ) g ( 1 ) g ( 2 ) ] \begin{bmatrix} g'(1) & g'(2) \\ g''(1) & g''(2) \\ \end{bmatrix}

find k = ln ( 2 ) . d e t B d e t A k = \ln (2) . \frac{det B}{det A}

Notations:

  • f ( x , y ) x ( a , b ) {{\partial f(x,y) \over \partial x} \bigg|_{(a,b)}} denotes the first-order partial derivative of f ( x , y ) f(x,y)

with respect to x x at the point ( a , b , f ( a , b ) ) (a,b,f(a,b))

  • f ( x , y ) y ( a , b ) {{\partial f(x,y) \over \partial y} \bigg|_{(a,b)}} denotes the first-order partial derivative of f ( x , y ) f(x,y)

with respect to y y at the point ( a , b , f ( a , b ) ) (a,b,f(a,b))

  • 2 f ( x , y ) x y ( a , b ) {{\partial^2 f(x,y) \over \partial x \partial y} \bigg|_{(a,b)}} denotes the second-order partial derivative of f ( x , y ) f(x,y)

with respect to y y and x x at the point ( a , b , f ( a , b ) ) (a,b,f(a,b))

  • 2 f ( x , y ) y x ( 0 , 0 ) {{\partial^2 f(x,y) \over \partial y \partial x} \bigg|_{(0,0)}} denotes the second-order partial derivative of f ( x , y ) f(x,y)

with respect to x x and y y at the point ( a , b , f ( a , b ) ) (a,b,f(a,b))

  • g ( a ) g'(a) denotes the first derivative of g ( z ) g(z) at the point ( a , g ( a ) ) (a, g(a))

  • g ( a ) g''(a) denotes the second derivative of g ( z ) g(z) at the point ( a , g ( a ) ) (a, g(a))

  • log 2 ( ) \log_2 (\cdot) denotes the binary logarithm of ( ) (\cdot)

  • ln ( ) \ln (\cdot) denotes the natural logarithm of ( ) (\cdot)

  • d e t A det A denotes the determinant of matrix A

  • d e t B det B denotes the determinant of matrix B

k = e 2 ln ( 2 ) k = - \frac{e}{2 \ln (2)} k = e ( ln ( 2 ) ) 2 k = - \frac{e}{ (\ln (2))^2} k = e ln ( 2 ) k = - \frac{e}{\ln (2)} k = + e ln ( 2 ) k = + \frac{e}{\ln (2)} k = + 2 e ln ( 2 ) k = + \frac{2 e}{\ln (2)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 21, 2020

For the matrix A : A:

f x = 1 x 2 2 e ( x 2 + y 2 ) / 2 f x ( x , y ) = ( 0 , 0 ) = 1 / 2 ; f_{x} = \frac{1-x^2}{2} \cdot e^{-(x^2+y^2)/2} \Rightarrow f_{x}|_{(x,y)=(0,0)} = 1/2;

f x y = y ( x 2 1 ) 2 e ( x 2 + y 2 ) / 2 f x y ( x , y ) = ( 1 , 1 ) = 0 ; f_{xy} = \frac{y(x^2-1)}{2} \cdot e^{-(x^2+y^2)/2} \Rightarrow f_{xy}|_{(x,y)=(1,1)} = 0;

f y x = y ( x 2 1 ) e ( x 2 + y 2 ) / 2 f y x ( x , y ) = ( 0 , 0 ) = 0 ; f_{yx} = y(x^2-1) \cdot e^{-(x^2+y^2)/2} \Rightarrow f_{yx}|_{(x,y)=(0,0)} = 0;

f y = x y 2 e ( x 2 + y 2 ) / 2 f y ( x , y ) = ( 1 , 1 ) = 1 2 e f_{y} = -\frac{xy}{2} \cdot e^{-(x^2+y^2)/2} \Rightarrow f_{y}|_{(x,y)=(1,1)} = -\frac{1}{2e}

or A = [ 1 2 0 0 1 2 e ] . \boxed{A = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2e} \end{bmatrix}}.

For the matrix B : B:

g ( x ) = 1 x ln ( 2 ) g'(x) = \frac{1}{x\ln(2)} and g ( x ) = 1 x 2 ln ( 2 ) g''(x) = -\frac{1}{x^2\ln(2)}

or B = [ 1 ln ( 2 ) 1 2 ln ( 2 ) 1 ln ( 2 ) 1 4 ln ( 2 ) ] . \boxed{B = \begin{bmatrix} \frac{1}{\ln(2)} & \frac{1}{2\ln(2)} \\ -\frac{1}{\ln(2)} & -\frac{1}{4\ln(2)} \end{bmatrix}}.

Finally:

k = ln ( 2 ) d e t ( B ) d e t ( A ) = ln ( 2 ) [ 1 4 ln 2 ( 2 ) ÷ 1 4 e ] = ln ( 2 ) e ln 2 ( 2 ) = e ln ( 2 ) . k = \ln(2) \cdot \frac{det(B)}{det(A)} = \ln(2) \cdot [\frac{1}{4\ln^{2}(2)} \div -\frac{1}{4e}] = \ln(2) \cdot -\frac{e}{\ln^{2}(2)} = \boxed{-\frac{e}{\ln(2)}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...