Logarithm 8

Algebra Level 2

w = ln ( 3 π 2 + 9 π + 6 π 2 + π π 3 4 π π 3 2 π 2 + 2 π 4 + 2 π 3 4 π 2 π 4 π 3 ) w = \ln \left(\frac{3\pi^2 + 9\pi + 6}{\pi^2 + \pi} - \frac{\pi^3 - 4\pi}{\pi^3 - 2\pi^2} + \frac{2\pi^4 + 2\pi^3 - 4\pi^2}{\pi^4 - \pi^3}\right)

Given the above and below:

{ ln ( π + 2 ) ln ( π ) 0.49 ln ( 5 ) ln ( 4 ) 0.22 ln ( 7 5 ) 0.34 \begin{cases} \ln (\pi + 2) - \ln (\pi) & \approx 0.49 \\ \ln (5) - \ln (4) & \approx 0.22 \\ \ln \left(\frac{7}{5}\right) & \approx 0.34 \end{cases}

Which of the following options is correct?

Notation: ln ( ) \ln (\cdot) denotes the natural logarithm function.

ln ( 7 ) < w \ln (7) < w ln ( 5 ) < w < ln ( 7 ) \ln (5) < w < \ln (7) ln ( 4 ) < w < ln ( 5 ) \ln (4) < w < \ln (5) w < ln ( 4 ) w < \ln (4)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 10, 2017

w = ln ( 3 π 2 + 9 π + 6 π 2 + π π 3 4 π π 3 2 π 2 + 2 π 4 + 2 π 3 4 π 2 π 4 π 3 ) = ln ( 3 ( π + 1 ) ( π + 2 ) π ( π + 1 ) π ( π 2 ) ( π + 2 ) π 2 ( π 2 ) + 2 π 2 ( π 1 ) ( π + 2 ) π 3 ( π 1 ) ) = ln ( 3 ( π + 2 ) π π + 2 π + 2 ( π + 2 ) π ) = ln ( 4 ( π + 2 ) π ) = ln 4 + ln ( π + 2 ) ln π Given that ln ( π + 2 ) ln π 0.49 ln 4 + 0.49 . . . ( 1 ) \begin{aligned} w & = \ln \left(\frac {3\pi^2 + 9\pi + 6}{\pi^2+\pi} - \frac {\pi^3-4\pi}{\pi^3-2\pi^2} + \frac {2\pi^4 + 2\pi^3 - 4\pi^2}{\pi^4-\pi^3} \right) \\ & = \ln \left(\frac {3(\pi+1)(\pi + 2)}{\pi(\pi+1)} - \frac {\pi(\pi-2)(\pi+2)}{\pi^2(\pi-2)} + \frac {2\pi^2(\pi-1)(\pi+2)}{\pi^3(\pi-1)} \right) \\ & = \ln \left(\frac {3(\pi + 2)}\pi - \frac {\pi + 2}\pi +\frac {2(\pi + 2)}\pi \right) \\ & = \ln \left(\frac {4(\pi + 2)}\pi \right) \\ & = \ln 4 + \color{#3D99F6} \ln (\pi +2) - \ln \pi \quad \quad \small \color{#3D99F6} \text{Given that }\ln (\pi +2) - \ln \pi \approx 0.49 \\ & \approx \ln 4 + \color{#3D99F6} 0.49 \quad \quad ...(1) \end{aligned}

Also given that:

ln 5 ln 4 0.22 . . . ( 2 ) ln 5 ln 4 + 0.22 . . . ( 2 a ) ln 7 5 0.34 ln 7 ln 5 0.34 . . . ( 3 ) ( 2 ) + ( 3 ) : ln 7 ln 4 0.56 ln 7 ln 4 + 0.56 . . . ( 3 a ) \begin{aligned} \ln 5 - \ln 4 & \approx 0.22 & ...(2) \\ \implies \ln 5 & \approx \ln 4 + 0.22 & ...(2a) \\ \ln \frac 75 & \approx 0.34 \\ \ln 7 - \ln 5 & \approx 0.34 & ...(3) \\ (2)+(3): \ \ \ln 7 - \ln 4 & \approx 0.56 \\ \implies \ln 7 & \approx \ln 4 + 0.56 & ...(3a) \end{aligned}

We note that:

ln 4 + 0.22 < ln 4 + 0.49 < ln 4 + 0.56 ( 2 a ) < ( 1 ) < ( 3 a ) ln 5 < w < ln 7 \begin{aligned} \ln 4 + 0.22 < \ln 4 & + 0.49 < \ln 4 + 0.56 & \small \color{#3D99F6} (2a) < (1) < (3a) \\ \implies \ln 5 < & w < \ln 7 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...