Logarithm 9

Calculus Level 3

f ( x ) = ( x π ) ( x 2 π ) ( x π 2 ) \large f(x) = (x - \pi)(x - 2\pi)(x - \pi^{2})

For f ( x ) f(x) as given above, find f ( x 1 ) f'(x_1) , where x 1 = e ln ( π 2 ) + ln ( π 3 ) log ( π 4 ) log ( e ) x_1 = e^{\ln (\pi^{2}) + \ln (\pi^{3}) - \frac{\log (\pi^{4})}{\log (e)}} .

Notations:

  • f ( x ) f '(x) the first derivative of f ( x ) f (x) .
  • ln ( ) \ln(\cdot) denotes the natural logarithm.
  • log ( ) \log (\cdot) denotes the common logarithm.
  • π 3.14159 \pi \approx 3.14159 is the ratio between a circle's circumference and diameter.
f ( x 1 ) = π f '(x_1) = \pi f ( x 1 ) < π f '(x_1) < \pi f ( x 1 ) > π 2 f '(x_1) > \pi^{2} f ( x 1 ) = π 2 f '(x_1) = \pi^{2} π < f ( x 1 ) < π 2 \pi < f '(x_1) < \pi^{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 10, 2017

Note that:

x 1 = exp ( ln π 2 + ln π 3 log a π 4 log a e ) = exp ( ln π 2 + ln π 3 ln π 4 ln a ln e ln a ) = exp ( ln π 2 + ln π 3 ln π 4 ln e ) = exp ( 2 ln π + 3 ln π 4 ln π 1 ) = e ln π = π \begin{aligned} x_1 & = \exp \left(\ln \pi^2 + \ln \pi^3 - \frac {\log_a \pi^4}{\log_a e} \right) \\ & = \exp \left(\ln \pi^2 + \ln \pi^3 - \frac {\frac {\ln \pi^4}{\ln a}}{\frac {\ln e}{\ln a}} \right) \\ & = \exp \left(\ln \pi^2 + \ln \pi^3 - \frac {\ln \pi^4}{\ln e} \right) \\ & = \exp \left(2\ln \pi + 3\ln \pi - \frac {4\ln \pi}{1} \right) \\ & = e^{\ln \pi} = \pi \end{aligned}

f ( x ) = ( x π ) ( x 2 π ) ( x π 2 ) f ( x ) = ( x 2 π ) ( x π 2 ) + ( x π ) ( x π 2 ) + ( x π ) ( x 2 π ) f ( x 1 ) = \require c a n c e l ( π 2 π ) ( π π 2 ) + ( π π ) 0 ( x π 2 ) + ( π π ) 0 ( x 2 π ) = π 2 ( π 1 ) > π 2 \begin{aligned} f(x) & = (x - \pi)(x - 2\pi)(x - \pi^2) \\ f'(x) & = (x - 2\pi)(x - \pi^2) + (x - \pi)(x - \pi^2) + (x - \pi)(x - 2\pi) \\ f'(x_1) & = \require {cancel} (\pi - 2\pi)(\pi - \pi^2) + \cancel {(\pi - \pi)}^0(x - \pi^2) + \cancel {(\pi - \pi)}^0(x - 2\pi) \\ & = \pi^2 (\pi -1) \\ & \boxed{> \pi^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...