Logarithm abc

Algebra Level 3

Assume { log 2 3 = a log 3 5 = b log 7 15 = c \begin{cases}\log_2 3=a\\\log_3 5=b\\\log_7 {15}=c\end{cases} Express log 14 45 \log_{14} {45} in terms of a , b , c a, b, c .

( 2 + b ) a c a + a b + c \frac {(2+b)ac} {a+ab+c} 1 + a 1 + b a 1 + b + 1 c \frac {1+\frac a {1+b}} {\frac a {1+b}+\frac 1 c} ( 2 + b ) ( b c + 1 ) ( 1 + b ) ( a b + 1 ) \frac {(2+b)(bc+1)} {(1+b)(ab+1)} a b c + a b + b c + 1 2 + a b c + a b \frac {abc+ab+bc+1} {2+abc+ab}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Karan Chatrath
Feb 11, 2021

The given relations can be rewritten in terms of natural logarithms using the following identity:

ln 3 ln 2 = a ( 1 ) \frac{\ln{3}}{\ln{2}} = a \dots (1) ln 5 ln 3 = b ( 2 ) \frac{\ln{5}}{\ln{3}} = b \dots (2) ln 15 ln 7 = c ( 3 ) \frac{\ln{15}}{\ln{7}} = c \dots (3)

Multiplying (1) and (2): ln 5 ln 2 = a b ( 4 ) \frac{\ln{5}}{\ln{2}} = ab \dots (4)

c = ln 15 ln 7 = ln 5 + ln 3 ln 7 c = \frac{\ln{15}}{\ln{7}} = \frac{\ln{5} + \ln{3}}{\ln{7}} c = ln 5 ln 2 + ln 3 ln 2 ln 7 ln 2 c = \frac{\frac{\ln{5}}{\ln{2}} + \frac{\ln{3}}{\ln{2}}}{\frac{\ln{7}}{\ln{2}}} c = a b + a ln 7 ln 2 \implies c = \frac{ab + a}{\frac{\ln{7}}{\ln{2}}} ln 7 ln 2 = a b + a c ( 5 ) \implies \frac{\ln{7}}{\ln{2}} = \frac{ab + a}{c} \dots (5)

Now:

ln 45 ln 14 = ln 5 + 2 ln 3 ln 7 + ln 2 \frac{\ln{45}}{\ln{14}} = \frac{\ln{5} + 2\ln{3}}{\ln{7} + \ln{2}} ln 45 ln 14 = ln 5 ln 2 + 2 ln 3 ln 2 ln 7 ln 2 + 1 \frac{\ln{45}}{\ln{14}} = \frac{\frac{\ln{5}}{\ln{2}} + 2\frac{\ln{3}}{\ln{2}}}{\frac{\ln{7}}{\ln{2}}+ 1}

Using relations (1), (4) and (5): ln 45 ln 14 = a b + 2 a a b + a c + 1 \frac{\ln{45}}{\ln{14}} = \frac{ab + 2a}{\frac{ab + a}{c}+ 1} ln 45 ln 14 = ( 2 + b ) a c a + a b + c \boxed{\frac{\ln{45}}{\ln{14}} = \frac{(2+b)ac}{a+ab+c}}

Veselin Dimov
Feb 11, 2021

We'll use a couple of logarithmic identities: log x x = 1 \log_xx=1 log x ( y z ) = log x y + log x z \log_x(yz)=\log_xy+\log_xz log z y = log x y log x z \log_zy=\frac{\log_xy}{\log_xz} log x y = 1 log y x \log_xy=\frac{1}{\log_yx} The last one follows from the first and the third identity. Now let's rework what we're given: log 14 45 = log 14 15 + log 14 3 \log_{14}45=\log_{14}15+\log_{14}3 = 1 log 15 14 + 1 log 3 14 =\frac{1}{\log_{15}14}+\frac{1}{\log_314} = 1 log 15 7 + log 15 2 + 1 log 3 2 + log 3 7 =\frac{1}{\log_{15}7+\log_{15}2}+\frac{1}{\log_32+\log_37} = 1 1 c + 1 log 2 15 + 1 1 a + log 15 7 log 15 3 =\frac{1}{\frac{1}{c}+\frac{1}{\log_215}}+\frac{1}{\frac{1}{a}+\frac{\log_{15}7}{\log_{15}3}} = 1 1 c + 1 log 2 3 + log 2 5 + 1 1 a + log 3 15 log 7 15 =\frac{1}{\frac{1}{c}+\frac{1}{\log_23+\log_25}}+\frac{1}{\frac{1}{a}+\frac{\log_315}{\log_715}} = 1 1 c + 1 a + log 3 5 log 3 2 + 1 1 a + log 3 3 + log 3 5 c =\frac{1}{\frac{1}{c}+\frac{1}{a+\frac{\log_35}{\log_32}}}+\frac{1}{\frac{1}{a}+\frac{\log_33+\log_35}{c}} = 1 1 c + 1 a + a b + 1 1 a + 1 + b c =\frac{1}{\frac{1}{c}+\frac{1}{a+ab}}+\frac{1}{\frac{1}{a}+\frac{1+b}{c}} After careful simplifying we reach to the answer: log 14 45 = ( b + 2 ) a c a + a b + c \log_{14}45=\frac{(b+2)ac}{a+ab+c}

Chew-Seong Cheong
Feb 12, 2021

log 14 45 = log ( 3 2 × 5 ) log ( 2 × 7 ) = 2 log 3 + log 5 log 2 + log 7 Divide up and down by log 2 = 2 log 3 log 2 + log 5 log 2 log 2 log 2 + log 7 log 2 Note that a = log 2 3 = log 3 log 2 = 2 a + log 5 log 2 × log 3 log 3 1 + log 7 log 2 × log 15 log 15 Similarly b = log 5 log 3 = 2 a + log 5 log 2 × log 3 log 3 1 + log 7 log 2 × log 15 log 15 and c = log 15 log 7 = 2 a + a b 1 + log 3 + log 5 c log 2 = 2 a + a b 1 + a c + log 5 c log 2 × log 3 log 3 = 2 a + a b 1 + a c + a b c = ( 2 + b ) a c a + a b + c \large \begin{aligned} \log_{14} 45 & = \frac {\log (3^2\times 5)}{\log (2 \times 7)} \\ & =\frac {2 \log 3 + \log 5}{\log 2 + \log 7} & \small \blue{\text{Divide up and down by }\log 2} \\ & = \frac {2 \blue{\frac {\log 3}{\log 2}} + \frac {\log 5}{\log 2}}{\frac {\log 2}{\log 2} + \frac {\log 7}{\log 2}} & \small \blue{\text{Note that }a = \log_2 3 = \frac {\log 3}{\log 2}} \\ & = \frac {2\blue a+ \frac \red{\log 5}\blue{\log 2} \times \frac \blue{\log 3}\red{\log 3}}{1 + \frac \blue{\log 7}{\log 2} \times \frac {\log 15}\blue{\log 15}} & \small \red{\text{Similarly }b = \frac {\log 5}{\log 3}} \\ & = \frac {2\blue a+ \frac \red{\log 5}\blue{\log 2} \times \frac \blue{\log 3}\red{\log 3}}{1 + \frac \blue{\log 7}{\log 2} \times \frac {\log 15}\blue{\log 15}} & \small \blue{\text{and }c = \frac {\log 15}{\log 7}} \\ & = \frac {2\blue a + \blue a \red b}{1+ \frac {\log 3 + \log 5}{\blue c \log 2}} \\ & = \frac {2a + ab}{1+ \frac ac + \frac {\log 5}{c \log 2} \times \frac {\log 3}{\log 3}} \\ & = \frac {2a + ab}{1+ \frac ac + \frac {ab}c} \\ & = \boxed{\frac {(2+b)ac}{a+ab+c}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...