Assume ⎩ ⎪ ⎨ ⎪ ⎧ lo g 2 3 = a lo g 3 5 = b lo g 7 1 5 = c Express lo g 1 4 4 5 in terms of a , b , c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We'll use a couple of logarithmic identities: lo g x x = 1 lo g x ( y z ) = lo g x y + lo g x z lo g z y = lo g x z lo g x y lo g x y = lo g y x 1 The last one follows from the first and the third identity. Now let's rework what we're given: lo g 1 4 4 5 = lo g 1 4 1 5 + lo g 1 4 3 = lo g 1 5 1 4 1 + lo g 3 1 4 1 = lo g 1 5 7 + lo g 1 5 2 1 + lo g 3 2 + lo g 3 7 1 = c 1 + lo g 2 1 5 1 1 + a 1 + lo g 1 5 3 lo g 1 5 7 1 = c 1 + lo g 2 3 + lo g 2 5 1 1 + a 1 + lo g 7 1 5 lo g 3 1 5 1 = c 1 + a + lo g 3 2 lo g 3 5 1 1 + a 1 + c lo g 3 3 + lo g 3 5 1 = c 1 + a + a b 1 1 + a 1 + c 1 + b 1 After careful simplifying we reach to the answer: lo g 1 4 4 5 = a + a b + c ( b + 2 ) a c
lo g 1 4 4 5 = lo g ( 2 × 7 ) lo g ( 3 2 × 5 ) = lo g 2 + lo g 7 2 lo g 3 + lo g 5 = lo g 2 lo g 2 + lo g 2 lo g 7 2 lo g 2 lo g 3 + lo g 2 lo g 5 = 1 + lo g 2 lo g 7 × lo g 1 5 lo g 1 5 2 a + lo g 2 lo g 5 × lo g 3 lo g 3 = 1 + lo g 2 lo g 7 × lo g 1 5 lo g 1 5 2 a + lo g 2 lo g 5 × lo g 3 lo g 3 = 1 + c lo g 2 lo g 3 + lo g 5 2 a + a b = 1 + c a + c lo g 2 lo g 5 × lo g 3 lo g 3 2 a + a b = 1 + c a + c a b 2 a + a b = a + a b + c ( 2 + b ) a c Divide up and down by lo g 2 Note that a = lo g 2 3 = lo g 2 lo g 3 Similarly b = lo g 3 lo g 5 and c = lo g 7 lo g 1 5
Problem Loading...
Note Loading...
Set Loading...
The given relations can be rewritten in terms of natural logarithms using the following identity:
ln 2 ln 3 = a … ( 1 ) ln 3 ln 5 = b … ( 2 ) ln 7 ln 1 5 = c … ( 3 )
Multiplying (1) and (2): ln 2 ln 5 = a b … ( 4 )
c = ln 7 ln 1 5 = ln 7 ln 5 + ln 3 c = ln 2 ln 7 ln 2 ln 5 + ln 2 ln 3 ⟹ c = ln 2 ln 7 a b + a ⟹ ln 2 ln 7 = c a b + a … ( 5 )
Now:
ln 1 4 ln 4 5 = ln 7 + ln 2 ln 5 + 2 ln 3 ln 1 4 ln 4 5 = ln 2 ln 7 + 1 ln 2 ln 5 + 2 ln 2 ln 3
Using relations (1), (4) and (5): ln 1 4 ln 4 5 = c a b + a + 1 a b + 2 a ln 1 4 ln 4 5 = a + a b + c ( 2 + b ) a c