Logarithm and a special ratio

Algebra Level 4

log 32 x = log 2016 y = log 63 ( x + y ) \large \log_{32}{x}=\log_{\sqrt{2016}}{y}=\log_{63}{(x+y)}

If x x and y y are real numbers and y x \dfrac{y}{x} is of the form a + b c \dfrac{a+\sqrt{b}}{c} , where a , b a,b and c c are integers such that b b is square-free, find a + b + c a+b+c .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Sep 8, 2016

log 32 x = log 2016 y = log 63 ( x + y ) \large \log_{32}{x}=\log_{\sqrt{2016}}{y}=\log_{63}{(x+y)}

{ log x log 32 = log ( x + y ) log 63 log y 1 2 ( log 32 + log 63 ) = log ( x + y ) log 63 \begin{cases} \dfrac{\log{x}}{\log{32}} = \dfrac{\log{(x+y)}}{\log{63}} \\ \dfrac{\log{y}}{\frac{1}{2}(\log{32}+\log{63})} = \dfrac{\log{(x+y)}}{\log{63}} \end{cases}

{ log x log ( x + y ) = log 32 log 63 log y 2 log ( x + y ) = 1 + log 32 log 63 \Rightarrow \begin{cases} \dfrac{\log{x}}{\log{(x+y)}} = \dfrac{\log{32}}{\log{63}} \\ \dfrac{\log{y^2}}{\log{(x+y)}} = 1+\dfrac{\log{32}}{\log{63}} \end{cases}

log y 2 log ( x + y ) = 1 + log x log ( x + y ) \dfrac{\log{y^2}}{\log{(x+y)}} = 1+\dfrac{\log{x}}{\log{(x+y)}}

log y 2 log ( x + y ) = log ( x + y ) + log x log ( x + y ) \dfrac{\log{y^2}}{\log{(x+y)}} = \dfrac{ \log{(x+y)} + \log{x} }{\log{(x+y)}}

log y 2 = log ( x 2 + x y ) \log{y^2}=\log{(x^2+xy)}

y 2 x y x 2 = 0 y^2-xy-x^2=0

( y x ) 2 y x 1 = 0 \left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}-1 =0

y x = 1 + 5 2 \dfrac{y}{x}=\dfrac{1+\sqrt{5}}{2} or y x = 1 5 2 \dfrac{y}{x}=\dfrac{1-\sqrt{5}}{2} (rej.)

a + b + c = 1 + 5 + 2 = 8 \Rightarrow a+b+c=1+5+2=8

excuse me, but I don't understand why you reject the second solution.

John Frank - 4 years, 9 months ago

Log in to reply

The 2nd solution lies outside the domain of the 2nd log. 1 - sqrt (5) < 0.

Peter van der Linden - 4 years, 9 months ago
Matt O
Oct 28, 2016

let z = \log_{32}{x} = \log_\sqrt{2016}{y} = log_{63}{(x+y)}

3 2 z = x , 201 6 z 2 = y , 6 3 z = x + y 2 5 z = x , ( 2 5 3 2 7 ) z 2 = y , ( 3 2 7 ) z = x + y 32^{z} = x, 2016^{\frac{z}{2}} = y, 63^{z} = x+y \\ 2^{5z} = x, (2^{5}3^{2}7)^{\frac{z}{2}} = y, (3^{2}7)^{z} = x+y

square the second equation to get 2 5 z 3 2 z 7 z = y 2 2^{5z}3^{2z}7^{z} = y^{2}

substitute the first and third equation to get

x ( x + y ) = y 2 ( y x ) 2 y x 1 = 0 y x = 1 ± 5 2 x(x+y) = y^{2} \\ (\frac{y}{x})^2-\frac{y}{x}-1=0 \\ \frac{y}{x} = \frac{1\pm\sqrt{5}}{2}

reject the negative value because this implies one of the first two expressions would the logarithm of negative number which is undefined

therefore y x = 1 + 5 2 a + b + c = 1 + 5 + 2 = 8 \frac{y}{x} = \frac{1+\sqrt{5}}{2} \Rightarrow a+b+c=1+5+2=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...