lo g 3 2 x = lo g 2 0 1 6 y = lo g 6 3 ( x + y )
If x and y are real numbers and x y is of the form c a + b , where a , b and c are integers such that b is square-free, find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
excuse me, but I don't understand why you reject the second solution.
Log in to reply
The 2nd solution lies outside the domain of the 2nd log. 1 - sqrt (5) < 0.
let z = \log_{32}{x} = \log_\sqrt{2016}{y} = log_{63}{(x+y)}
3 2 z = x , 2 0 1 6 2 z = y , 6 3 z = x + y 2 5 z = x , ( 2 5 3 2 7 ) 2 z = y , ( 3 2 7 ) z = x + y
square the second equation to get 2 5 z 3 2 z 7 z = y 2
substitute the first and third equation to get
x ( x + y ) = y 2 ( x y ) 2 − x y − 1 = 0 x y = 2 1 ± 5
reject the negative value because this implies one of the first two expressions would the logarithm of negative number which is undefined
therefore x y = 2 1 + 5 ⇒ a + b + c = 1 + 5 + 2 = 8
Problem Loading...
Note Loading...
Set Loading...
lo g 3 2 x = lo g 2 0 1 6 y = lo g 6 3 ( x + y )
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ lo g 3 2 lo g x = lo g 6 3 lo g ( x + y ) 2 1 ( lo g 3 2 + lo g 6 3 ) lo g y = lo g 6 3 lo g ( x + y )
⇒ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ lo g ( x + y ) lo g x = lo g 6 3 lo g 3 2 lo g ( x + y ) lo g y 2 = 1 + lo g 6 3 lo g 3 2
lo g ( x + y ) lo g y 2 = 1 + lo g ( x + y ) lo g x
lo g ( x + y ) lo g y 2 = lo g ( x + y ) lo g ( x + y ) + lo g x
lo g y 2 = lo g ( x 2 + x y )
y 2 − x y − x 2 = 0
( x y ) 2 − x y − 1 = 0
x y = 2 1 + 5 or x y = 2 1 − 5 (rej.)
⇒ a + b + c = 1 + 5 + 2 = 8