Logarithm basics

Algebra Level 2

Find the value of : log 1003 ( 1 + 1 2 ) + log 1003 ( 1 + 1 3 ) + log 1003 ( 1 + 1 4 ) + . . . . + log 1003 ( 1 + 1 2005 ) \log_{1003}(1+\frac{1}{2})+\log_{1003}(1+\frac{1}{3})+\log_{1003}(1+\frac{1}{4})+....+\log_{1003}(1+\frac{1}{2005})


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yannis Wu-Yip
Dec 24, 2018

log 1003 ( 1 + 1 2 ) + log 1003 ( 1 + 1 3 ) + . . . + log 1003 ( 1 + 1 2005 ) \log_{1003}(1+\frac{1}{2})+\log_{1003}(1+\frac{1}{3})+...+\log_{1003}(1+\frac{1}{2005})

= log 1003 ( 3 2 ) + log 1003 ( 4 3 ) + . . . + log 1003 ( 2006 2005 ) =\log_{1003}(\frac{3}{2})+\log_{1003}(\frac{4}{3})+...+\log_{1003}(\frac{2006}{2005})

= log 1003 ( ( 3 2 ) ( 4 3 ) . . . ( 2006 2005 ) ) =\log_{1003}((\frac{3}{2})(\frac{4}{3})...(\frac{2006}{2005}))

= log 1003 ( 2006 2 ) =\log_{1003}(\frac{2006}{2})

= 1 =\boxed{1}

Vedant Saini
Dec 24, 2018

log 1003 ( 1 + 1 2 ) + log 1003 ( 1 + 1 3 ) + log 1003 ( 1 + 1 4 ) + . . . + log 1003 ( 1 + 1 2005 ) = log 1003 3 2 + log 1003 ( 4 3 ) + log 1003 ( 5 4 ) + . . . + log 1003 ( 2006 2005 ) = log 1003 3 log 1003 2 + log 1003 4 log 1003 3 + . . . + log 1003 2006 log 1003 2005 Recall that: log a m n = log a m log a n \begin{aligned} \log_{1003}(1+\frac{1}{2}) + \log_{1003}(1+\frac{1}{3}) + \log_{1003}(1+\frac{1}{4}) + ... + \log_{1003}(1+\frac{1}{2005}) \\ = \log_{1003}\frac{3}{2} + \log_{1003}(\frac{4}{3}) + \log_{1003}(\frac{5}{4}) + ... + \log_{1003}(\frac{2006}{2005}) \\ = \log_{1003}3 - \log_{1003}2 + \log_{1003}4 - \log_{1003}3 + ... + \log_{1003}2006 - \log_{1003}2005 && \color{magenta} \text{Recall that: } \log_{a}\frac{m}{n} = \log_{a}m - \log_{a}n \end{aligned} This is precisely a telescoping series

On simplifying, we get: log 1003 2006 log 1003 2 = log 1003 2006 2 = log 1003 1003 = 1 \begin{aligned} \log_{1003}2006 - \log_{1003}2 \\ = \log_{1003}\frac{2006}{2} \\ =\log_{1003}1003 \\ = \boxed{1} \end{aligned}

You could also combine the logs on the second line to the third line, getting log 1003 ( 3 2 4 3 5 4 . . . 2006 2005 ) \log_{1003}(\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot ... \cdot \frac{2006}{2005}) . This saves one extra line of working, but both methods are just as good.

Stephen Mellor - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...