Find the value of : lo g 1 0 0 3 ( 1 + 2 1 ) + lo g 1 0 0 3 ( 1 + 3 1 ) + lo g 1 0 0 3 ( 1 + 4 1 ) + . . . . + lo g 1 0 0 3 ( 1 + 2 0 0 5 1 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
lo g 1 0 0 3 ( 1 + 2 1 ) + lo g 1 0 0 3 ( 1 + 3 1 ) + lo g 1 0 0 3 ( 1 + 4 1 ) + . . . + lo g 1 0 0 3 ( 1 + 2 0 0 5 1 ) = lo g 1 0 0 3 2 3 + lo g 1 0 0 3 ( 3 4 ) + lo g 1 0 0 3 ( 4 5 ) + . . . + lo g 1 0 0 3 ( 2 0 0 5 2 0 0 6 ) = lo g 1 0 0 3 3 − lo g 1 0 0 3 2 + lo g 1 0 0 3 4 − lo g 1 0 0 3 3 + . . . + lo g 1 0 0 3 2 0 0 6 − lo g 1 0 0 3 2 0 0 5 Recall that: lo g a n m = lo g a m − lo g a n This is precisely a telescoping series
On simplifying, we get: lo g 1 0 0 3 2 0 0 6 − lo g 1 0 0 3 2 = lo g 1 0 0 3 2 2 0 0 6 = lo g 1 0 0 3 1 0 0 3 = 1
You could also combine the logs on the second line to the third line, getting lo g 1 0 0 3 ( 2 3 ⋅ 3 4 ⋅ 4 5 ⋅ . . . ⋅ 2 0 0 5 2 0 0 6 ) . This saves one extra line of working, but both methods are just as good.
Problem Loading...
Note Loading...
Set Loading...
lo g 1 0 0 3 ( 1 + 2 1 ) + lo g 1 0 0 3 ( 1 + 3 1 ) + . . . + lo g 1 0 0 3 ( 1 + 2 0 0 5 1 )
= lo g 1 0 0 3 ( 2 3 ) + lo g 1 0 0 3 ( 3 4 ) + . . . + lo g 1 0 0 3 ( 2 0 0 5 2 0 0 6 )
= lo g 1 0 0 3 ( ( 2 3 ) ( 3 4 ) . . . ( 2 0 0 5 2 0 0 6 ) )
= lo g 1 0 0 3 ( 2 2 0 0 6 )
= 1