This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great! Converting directly to just lo g 2 , lo g 3 makes it easy to see the algebraic manipulation.
1 + lo g 2 3 2 + lo g 2 3 + 1 + lo g 3 2 3 + lo g 3 4 = lo g 2 2 + lo g 2 3 lo g 2 4 + lo g 2 3 + lo g 3 3 + lo g 3 2 lo g 3 2 7 + lo g 3 4 = lo g 2 6 lo g 2 1 2 + lo g 3 6 lo g 3 ( 2 7 × 4 ) = lo g 6 1 2 + lo g 6 1 0 8 = lo g 6 ( 2 7 × 4 × 1 2 ) = lo g 6 ( 3 4 ⋅ 2 4 ) = 4 ⋅ lo g 6 6 = 4
Answer is 4 .
We have:
1 + lo g 2 3 2 + lo g 2 3 + 1 + lo g 3 2 3 + lo g 3 4 = 1 + lo g 2 3 2 + lo g 2 3 + 1 + lo g 3 2 3 + 2 lo g 3 2 = 1 + 1 + lo g 2 3 1 + 2 + 1 + lo g 3 2 1 = 3 + ( 1 + lo g 2 3 ) ( 1 + lo g 3 2 ) 1 + lo g 3 2 + 1 + lo g 2 3 = 3 + 1 + lo g 2 3 + lo g 3 2 + lo g 2 3 lo g 3 2 2 + lo g 3 2 + lo g 2 3 = 3 + 2 + lo g 2 3 + lo g 3 2 2 + lo g 3 2 + lo g 2 3 = 4
e simplification can be done in various methods but the best method is to separate it as far as possible - like 2/1+log 2(3) + log 2(3)/1+log 2(3) + .... so on. I've done it in my own method and got it as 1 + log 6(216) = 4
2 + log 2(3) = log 2(4) + log 2(3) = log 2(12) 1 + log 2(3) = log 2(2) + log 2(3) = log 2(6) 3 + log 3(4) = log 3(27) + log 3(4) = log 3(108) 1 + log 3(2) = log 3(3) + log 3(2) = log 3(6)
Now use the change of base formula.
log 2(12)/log 2(6) = log 6(12) log 3(108)/log 3(6) = log 6(108)
So now the original expression can be written as follows.
log 6(12) + log 6(108) = log 6(1296) = log 6(6^4) = 4
An easy way to simplify the solution is see that if you make log(base 2) of 3 = x then log(base 3) of 2 = 1 / x and work accordingly. Grace and peace
Problem Loading...
Note Loading...
Set Loading...
1 + lo g 2 3 2 + lo g 2 3 + 1 + lo g 3 2 3 + lo g 3 4 = 1 + lo g 2 lo g 3 2 + lo g 2 lo g 3 + 1 + lo g 3 lo g 2 3 + lo g 3 2 lo g 2 = lo g 2 + lo g 3 2 lo g 2 + lo g 3 + lo g 3 + lo g 2 3 lo g 3 + 2 lo g 2 = lo g 2 + lo g 3 4 lo g 2 + 4 lo g 3 = 4