Logarithm of imaginary numbers?

Algebra Level 4

If ln r \ln r and ln s \ln s are the roots of the equation 4 x 2 2 x + 5 = 0 4x^{2}-2x+5=0 ,find the value of log r s + log s r \log_{r}{s}+\log_{s}{r} .


The answer is -1.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raj Rajput
Nov 8, 2015

By the quadratic formula the roots of the given equation are

x = 2 ± ( 2 ) 2 4 4 5 2 4 = 1 ± i 19 4 . x = \dfrac{2 \pm \sqrt{(-2)^{2} - 4*4*5}}{2*4} = \dfrac{1 \pm i*\sqrt{19}}{4}.

Without loss of generality we can assign ln ( r ) \ln(r) and ln ( s ) \ln(s) as the positive and negative roots, respectively.

Now by the change-of-base rule we have that

log r ( s ) + log s ( r ) = ln ( s ) ln ( r ) + ln ( r ) ln ( s ) . \log_{r}(s) + \log_{s}(r) = \dfrac{\ln(s)}{\ln(r)} + \dfrac{\ln(r)}{\ln(s)}.

Next, we find that

ln ( r ) ln ( s ) = 1 + i 19 1 i 19 × 1 + i 19 1 + i 19 = 1 19 + i 2 19 20 = 9 + i 19 10 , \dfrac{\ln(r)}{\ln(s)} = \dfrac{1 + i*\sqrt{19}}{1 - i*\sqrt{19}} \times \dfrac{1 + i*\sqrt{19}}{1 + i*\sqrt{19}} = \dfrac{1 - 19 + i*2\sqrt{19}}{20} = \dfrac{-9 + i*\sqrt{19}}{10},

and so

ln ( r ) ln ( s ) + ln ( s ) ln ( r ) = 9 + i 19 10 + 10 9 + i 19 = 81 19 i 18 19 10 ( 9 + i 19 ) = \dfrac{\ln(r)}{\ln(s)} + \dfrac{\ln(s)}{\ln(r)} = \dfrac{-9 + i*\sqrt{19}}{10} + \dfrac{10}{-9 + i*\sqrt{19}} = \dfrac{81 - 19 - i*18\sqrt{19}}{10*(-9 + i*\sqrt{19})} =

162 i 18 19 10 ( 9 + i 19 ) = 18 ( 9 + i 19 ) 10 ( 9 + i 19 ) = 18 10 = 1.8 . \dfrac{162 - i*18\sqrt{19}}{10*(-9 + i*\sqrt{19})} = \dfrac{-18*(-9 + i*\sqrt{19})}{10*(-9 + i*\sqrt{19})} = -\dfrac{18}{10} = \boxed{-1.8}.

We can write ln ( s ) ln ( r ) + ln ( r ) ln ( s ) \dfrac{\ln(s)}{\ln(r)} + \dfrac{\ln(r)}{\ln(s)} as ( ln ( s ) + ln ( r ) ) 2 2 ln ( r ) ln ( s ) ln ( r ) ln ( s ) \dfrac{(\ln(s)+\ln(r))^2-2\ln(r)\ln(s)}{\ln(r)\ln(s)} , and than find its value without computing the actual roots, by Vieta's formulas.

Miloje Đukanović - 5 years, 7 months ago

Log in to reply

Yes, I realized that after seeing Raj's solution, (which was posted just a short time after mine).

Brian Charlesworth - 5 years, 7 months ago

Let l n r = a ln r=a and l n s = b ln s=b . This means l o g r s + l o g s r log_{r}s+log_{s}r = l n s l n r + l n s l n r =\frac{ln s}{ln r}+ \frac{ln s}{ln r} = a b + b a =\frac{a}{b} +\frac{b}{a} = a 2 + b 2 a b =\frac{a^{2}+b^{2}}{ab} = ( a + b ) 2 2 a b a b =\frac{(a+b)^{2}-2ab}{ab} = ( 1 2 ) 2 2 5 4 5 4 =\frac{(\frac{1}{2})^{2}-2 \cdot \frac{5}{4}}{\frac{5}{4}} = 1.8 =-1.8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...