Logarithm Of The Nested Radical

Algebra Level 2

log x ( x x x x ) = ? \large \log_{\sqrt{x}} \left( \sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right) = \, ?

  • Clarification: x x is a positive real number and x 1. x \neq 1.
15 2 \frac{15}2 15 4 \frac{15}{4} 15 8 \frac{15}8 15 16 \frac{15}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

y = log x x x x x = log x 1 2 ( x ( x ( x x 1 2 ) 1 2 ) 1 2 ) 1 2 = log x 1 2 ( x ( x ( x 3 2 ) 1 2 ) 1 2 ) 1 2 = log x 1 2 ( x ( x x 3 4 ) 1 2 ) 1 2 = log x 1 2 ( x ( x 7 4 ) 1 2 ) 1 2 = log x 1 2 ( x x 7 8 ) 1 2 = log x 1 2 ( x 15 8 ) 1 2 = log x 1 2 ( x 1 2 ) 15 8 = 15 8 \begin{aligned} y & = \log_{\sqrt{x}} \sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \\ & = \log_{x^\frac{1}{2}} \left(x \left(x \left(x \cdot{} x^\frac{1}{2} \right)^\frac{1}{2} \right)^\frac{1}{2} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x \left(x \left(x^\frac{3}{2} \right)^\frac{1}{2} \right)^\frac{1}{2} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x \left(x \cdot{} x^\frac{3}{4} \right)^\frac{1}{2} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x \left(x^\frac{7}{4} \right)^\frac{1}{2} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x \cdot{} x^\frac{7}{8} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x^\frac{15}{8} \right)^\frac{1}{2} \\ & = \log_{x^\frac{1}{2}} \left(x^\frac{1}{2} \right)^\frac{15}{8} \\ & = \boxed{\dfrac{15}{8}} \end{aligned}

Yasir Soltani
Apr 7, 2016

log x ( x x x x ) = log x ( x ) + log x ( x ) + log x ( x ) + log x ( x ) \large \log_{\sqrt{x}} \left(\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}} \right) =\log_{\sqrt{x}}(\sqrt{x})+\log_{\sqrt{x}}\left(\sqrt{\sqrt{x}}\right)+\log_{\sqrt{x}}\left(\sqrt{\sqrt{\sqrt{x}}}\right)+\log_{\sqrt{x}}\left(\sqrt{\sqrt{\sqrt{\sqrt{x}}}}\right) = 1 + 1 2 + 1 4 + 1 8 \large =1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8} = 15 8 \large =\frac{15}{8}

log x ( x x x x ) = log x ( x 15 16 ) = 15 16 log x ( x ) = 15 log x ( x ) 16 = 15 1 2 = 30 16 = 15 8 \begin{aligned}\log_{\sqrt{x}}\left(\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\right) &= \log_{\sqrt{x}}\left(x^{\frac{15}{16}}\right) \\&= \frac{15}{16}\log_{\sqrt{x}}(x) \\&= \frac{15 \log_{\sqrt{x}}(x) }{16} \\&=\frac{15}{\frac{1}{2}} \\&= \frac{30}{16} \\&= \frac{15}{8} \end{aligned}

ADIOS!! \LARGE \text{ADIOS!!}

Hey, I might sound dumb, but how did you get x^(15/16) in the first step?

Aditya Rao - 4 years, 10 months ago

Apply the rule b 1 n = b n b^{\frac{1}{n}} = \sqrt[n]{b} , b 1 n b = b 1 n + 1 b^{\frac{1}{n}} \cdot b=b^{\frac{1}{n}+1}

A Former Brilliant Member - 4 years, 10 months ago

In the 4th equal, fraction 15 1 2 \frac{15}{\frac{1}{2}} is incorrect. It must be 15 2 16 \frac{15 \cdot 2}{16} .

Alexander Israel Flores Gutiérrez - 4 years, 10 months ago
Prokash Shakkhar
Dec 31, 2016

Let, \xi= log_{\sqrt{x}} \sqrt{x \sqrt{x \sqrt{x \sqrt{x}}}} =\frac{1}{\frac{1}{2}}log_x x^{\frac{15}{16}} =\frac{15}{16}* 2 =\boxed{\color\red{\frac{15}{8}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...