Logarithm problem 4 by Dhaval Furia

Algebra Level pending

Let x x and y y be positive real numbers such that

log 5 ( x + y ) + log 5 ( x y ) = 3 \log_5 (x + y) + \log_5 (x - y) = 3

log 2 y log 2 x = 1 log 2 3 \log_2 y - \log_2 x = 1 - \log_2 3

Then x y xy equals _____

250 250 100 100 150 150 25 25

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Watson
Jun 14, 2020

Neaten up Equation 1 using log properties: log 5 ( x + y ) + log 5 ( x y ) = 3 log 5 ( x 2 y 2 ) = log 5 ( 125 ) x 2 y 2 = 125 \log_5(x+y)+\log_5(x-y)=3 \Longrightarrow \log_5(x^2-y^2)=\log_5(125) \Longrightarrow x^2-y^2=125

Neaten up Equation 2 using log properties: log 2 y log 2 x = 1 log 2 3 log 2 y x = log 2 2 3 y x = 2 3 \log_2y-\log_2x=1-\log_23 \Longrightarrow \log_2\frac{y}{x}=\log_2\frac{2}{3} \Longrightarrow \frac{y}{x}=\frac{2}{3}

Rearrange Equation 2: y x = 2 3 y = 2 3 x \frac{y}{x}=\frac{2}{3} \Longrightarrow y=\frac{2}{3}x

Substitute x x into Equation 1: x 2 y 2 = 125 x 2 ( 2 3 x ) 2 = 125 x 2 4 9 x 2 = 125 5 9 x 2 = 125 x 2 = 225 x = 15 x^2-y^2=125 \Longrightarrow x^2-\left(\frac{2}{3}x\right)^2=125 \Longrightarrow x^2-\frac{4}{9}x^2=125 \Longrightarrow \frac{5}{9}x^2=125 \Longrightarrow x^2=225 \Longrightarrow \boxed{x=15}

Find y y by substituting x x into Equation 2: y x = 2 3 y 15 = 2 3 y = 10 \frac{y}{x}=\frac{2}{3} \Longrightarrow \frac{y}{15}=\frac{2}{3} \Longrightarrow \boxed{y=10}

Finally: x y = 15 × 10 = 150 xy=15\times10=\boxed{150}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...