Logarithm + Trigonometry + Products

Geometry Level 3

log 1 2 ( n = 1 45 sin ( 2 n 1 ) ) = ? \Large\log_{\frac12}{\left(\displaystyle\prod_{n=1}^{45}\sin{(2n-1)}^{\circ}\right)}=\ ?


The answer is 44.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rudresh Tomar
Jun 30, 2015

log 1 2 ( sin ( 1 ) × sin ( 3 ) × sin ( 5 ) × sin ( 7 ) . . . . . . . . . . . . . . . sin ( 8 9 ) ) log 1 2 ( sin ( 1 ) × sin ( 2 ) × sin ( 3 ) × sin ( 4 ) × sin ( 5 ) . . . . . . . . . . . . . . . sin ( 8 9 ) sin ( 2 ) × sin ( 4 ) × sin ( 6 ) . . . . . . . . . . . . . . . . . . . . sin ( 8 8 ) ) log 1 2 ( sin ( 1 ) × sin ( 2 ) × sin ( 3 ) . . . . . . . . . . . . . . . sin ( 8 9 ) 2 44 × sin ( 1 ) × cos ( 1 ) × sin ( 2 ) × cos ( 2 ) × sin ( 3 ) × cos ( 3 ) × . . . . . . . . . . . . . . . . . . . . sin ( 4 4 ) × cos ( 4 4 ) ) [ sin ( 2 x ) = 2 sin ( x ) cos ( x ) ] log 1 2 ( sin ( 1 ) × sin ( 2 ) × sin ( 3 ) × sin ( 4 ) × sin ( 5 ) × sin ( 6 ) × sin ( 7 ) . . . . . . . . . . . . . . . cos ( 3 ) × cos ( 2 ) × cos ( 1 ) 2 44 × sin ( 1 ) × cos ( 1 ) × sin ( 2 ) × cos ( 2 ) × sin ( 3 ) × cos ( 3 ) × . . . . . . . . . . . . . . . . . . . . sin ( 4 4 ) × cos ( 4 4 ) ) [ sin ( 90 x ) = cos ( x ) ] a l l t e r m s w o u l d c a n c e l e x c e p t sin ( 4 5 ) log 1 2 ( sin ( 4 5 ) 2 44 ) log 1 2 ( 1 2 44 2 ) log 1 2 ( 1 2 ) 44.5 = 44.5 \Rightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \sin({ 1 }^{ \circ })\times \sin(3^{ \circ })\times \sin(5^{ \circ })\times \sin(7^{ \circ })...............\sin(89^{ \circ }) \right) } \\ \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \frac { \sin({ 1 }^{ \circ })\times \sin(2^{ \circ })\times \sin(3^{ \circ })\times \sin(4^{ \circ })\times \sin(5^{ \circ })...............\sin(89^{ \circ }) }{ \sin({ 2 }^{ \circ })\times \sin(4^{ \circ })\times \sin({ 6 }^{ \circ })....................\sin(88^{ \circ }) } \right) } \\ \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \frac { \sin({ 1 }^{ \circ })\times \sin(2^{ \circ })\times \sin(3^{ \circ })...............\sin(89^{ \circ }) }{ { 2 }^{ 44 }\times \sin({ 1 }^{ \circ })\times \cos(1^{ \circ })\times \sin(2^{ \circ })\times \cos({ 2 }^{ \circ })\times \sin(3^{ \circ })\times \cos(3^{ \circ })\times ....................\sin(44^{ \circ })\times \cos(44^{ \circ }) } \right) } \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad [\because \quad \sin(2x)=2\sin(x)\cos(x)]\\ \\ \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \frac { \sin({ 1 }^{ \circ })\times \sin(2^{ \circ })\times \sin(3^{ \circ })\times \sin(4^{ \circ })\times \sin(5^{ \circ })\times \sin(6^{ \circ })\times \sin(7^{ \circ })...............\cos(3^{ \circ })\times \cos(2^{ \circ })\times \cos(1^{ \circ }) }{ { 2 }^{ 44 }\times \sin({ 1 }^{ \circ })\times \cos(1^{ \circ })\times \sin(2^{ \circ })\times \cos({ 2 }^{ \circ })\times \sin(3^{ \circ })\times \cos(3^{ \circ })\times ....................\sin(44^{ \circ })\times \cos(44^{ \circ }) } \right) } \quad \\ \\ \quad \quad \quad \quad [\because \quad \sin(90-x)=\cos(x)]\\ \\ \Longrightarrow \quad all\quad terms\quad would\quad cancel\quad except\quad \rightarrow \quad \sin(45^{ \circ })\\ \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \frac { \sin(45^{ \circ }) }{ { 2 }^{ 44 } } \right) } \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ \left( \frac { 1 }{ { 2 }^{ 44 }\sqrt { 2 } } \right) } \Longrightarrow \log _{ \frac { 1 }{ 2 } }{ { \left( \frac { 1 }{ 2 } \right) }^{ 44.5 }=\quad 44.5 } \\

Moderator note:

Great solution!

Genius!The best solution!

Adarsh Kumar - 5 years, 11 months ago

Log in to reply

THANKS !!!

Rudresh Tomar - 5 years, 11 months ago

Your solution made mine looks like garbage hahaha! Nice work by the way!

Pi Han Goh - 5 years, 11 months ago

That is a really great approach

Aaryan Marcha - 11 months, 1 week ago
Pi Han Goh
Jun 29, 2015

Apply the double angle formula sin ( 2 A ) = 2 sin ( A ) cos ( A ) \sin(2A) = 2\sin(A) \cos(A) , the product equals to

sin ( 1 ) sin ( 3 ) sin ( 5 ) × × sin ( 8 9 ) = [ sin ( 1 ) sin ( 8 9 ) ] × [ sin ( 3 ) × sin ( 8 7 ) ] × × [ sin ( 4 3 ) × sin ( 4 7 ) ] × sin ( 4 5 ) = [ sin ( 1 ) cos ( 1 ) ] × [ sin ( 3 ) × cos ( 3 ) ] × × [ sin ( 4 3 ) × cos ( 4 3 ) ] × 2 1 / 2 = 1 2 sin ( 2 ) × 1 2 sin ( 6 ) × × 1 2 sin ( 8 6 ) × 2 1 / 2 = ( 1 2 ) 22 2 1 / 2 × [ sin ( 2 ) × sin ( 6 ) × × sin ( 8 6 ) ] = 2 22.5 × [ cos ( 8 8 ) × cos ( 8 4 ) × × cos ( 4 ) ] \begin{aligned} && \sin(1^\circ) \sin(3^\circ) \sin(5^\circ)\times \cdots \times \sin(89^\circ) \\ &= & \bigg [\sin(1^\circ) \sin(89^\circ) \bigg] \times \bigg[\sin(3^\circ) \times \sin(87^\circ) \bigg ] \times \cdots \times \bigg[\sin(43^\circ) \times \sin(47^\circ) \bigg ] \times \sin(45^\circ) \\ &= & \bigg [\sin(1^\circ) \cos(1^\circ) \bigg] \times \bigg[\sin(3^\circ) \times \cos(3^\circ) \bigg ] \times \cdots \times \bigg[\sin(43^\circ) \times \cos(43^\circ) \bigg ] \times 2^{-1/2} \\ &= & \frac12 \sin(2^\circ) \times \frac12 \sin(6^\circ)\times \cdots \times \frac12 \sin(86^\circ) \times 2^{-1/2} \\ &= & \left(\frac12\right)^{22} \cdot 2^{-1/2} \times \bigg[ \sin(2^\circ) \times\sin(6^\circ)\times \cdots \times\sin(86^\circ) \bigg ] \\ &= & 2^{-22.5} \times \bigg[ \cos(88^\circ) \times \cos(84^\circ)\times \cdots \times \cos(4^\circ) \bigg ] \\ \end{aligned}

Let C = cos ( 8 8 ) × cos ( 8 4 ) × × cos ( 4 ) C = \cos(88^\circ) \times \cos(84^\circ)\times \cdots \times \cos(4^\circ) , then C > 0 C> 0 because it is the product of all positive terms.

Consider the equation cos ( 90 x ) = 1 \cos(90x) = 1 , then 90 x = n 36 0 90x = n\cdot 360^\circ for integer n n , which means that x = 4 , 8 , 1 2 , , 36 0 x = 4^\circ, 8^\circ, 12^\circ, \ldots, 360^\circ satisfy the former equation.

Recall the properties of Chebyshev polynomials, the leading coefficient of polynomial cos ( 90 x ) \cos(90x) in terms of cos ( x ) \cos(x) is 2 89 2^{89} and because 90 90 is an even number not divisible by 4 4 , the constant of this same polynomial is equals to 1 -1 . Thus

1 = cos ( 90 x ) = 2 89 cos 90 ( x ) 1 0 = 2 89 cos 90 ( x ) 2 \begin{aligned} 1 &=& \cos(90x) \\ &=& 2^{89} \cos^{90}(x) - \ldots -1 \\ 0 &=& 2^{89} \cos^{90}(x) - \ldots - 2 \end{aligned}

By Vieta's formula, and apply these formulae: cos ( A ) = cos ( 18 0 A ) = cos ( A 18 0 ) = cos ( 36 0 A ) \cos(A) = -\cos(180^\circ -A) = -\cos(A - 180^\circ) = \cos(360^\circ - A) , we get

cos ( 4 ) cos ( 8 ) cos ( 1 2 ) cos ( 36 0 ) = 2 2 89 [ cos ( 4 ) cos ( 8 ) cos ( 1 2 ) cos ( 8 8 ) ] 4 cos ( 18 0 ) cos ( 36 0 ) = 1 2 88 C 4 1 1 = 1 2 88 C = 1 2 22 \begin{aligned} \cos(4^\circ) \cos(8^\circ) \cos(12^\circ) \ldots \cos(360^\circ) &=& -\frac2{2^{89}} \\ \bigg[\cos(4^\circ) \cos(8^\circ) \cos(12^\circ) \dots \cos(88^\circ) \bigg]^4 \cdot \cos(180^\circ) \cos(360^\circ) &=& -\frac1{2^{88}} \\ C^4 \cdot -1 \cdot 1 &=& -\frac1{2^{88}} \\ C &=& \frac1{2^{22}} \\ \end{aligned}

Hence, putting it all together, the product equals to 2 22.5 2 22 = 2 44.5 = ( 1 2 ) 44.5 2^{-22.5} \cdot 2^{-22} = 2^{-44.5} = \left( \frac12\right)^{44.5} . Lastly, apply the log,

log 1 2 ( 1 2 ) 44.5 = 44.5 log 1 2 1 2 = 44.5 \large \log_{\frac12} \left( \frac12\right)^{44.5} = 44.5 \cancel{\log_{\frac12} \frac12 }= \boxed{44.5}

Moderator note:

Good approach. That is the most direct way that I know of to prove the (generalized) statement about the product of sines / cosines.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...