lo g 2 1 ⎝ ⎜ ⎛ n = 1 ∏ 4 5 sin ( 2 n − 1 ) ∘ ⎠ ⎟ ⎞ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great solution!
Genius!The best solution!
Your solution made mine looks like garbage hahaha! Nice work by the way!
That is a really great approach
Apply the double angle formula sin ( 2 A ) = 2 sin ( A ) cos ( A ) , the product equals to
= = = = = sin ( 1 ∘ ) sin ( 3 ∘ ) sin ( 5 ∘ ) × ⋯ × sin ( 8 9 ∘ ) [ sin ( 1 ∘ ) sin ( 8 9 ∘ ) ] × [ sin ( 3 ∘ ) × sin ( 8 7 ∘ ) ] × ⋯ × [ sin ( 4 3 ∘ ) × sin ( 4 7 ∘ ) ] × sin ( 4 5 ∘ ) [ sin ( 1 ∘ ) cos ( 1 ∘ ) ] × [ sin ( 3 ∘ ) × cos ( 3 ∘ ) ] × ⋯ × [ sin ( 4 3 ∘ ) × cos ( 4 3 ∘ ) ] × 2 − 1 / 2 2 1 sin ( 2 ∘ ) × 2 1 sin ( 6 ∘ ) × ⋯ × 2 1 sin ( 8 6 ∘ ) × 2 − 1 / 2 ( 2 1 ) 2 2 ⋅ 2 − 1 / 2 × [ sin ( 2 ∘ ) × sin ( 6 ∘ ) × ⋯ × sin ( 8 6 ∘ ) ] 2 − 2 2 . 5 × [ cos ( 8 8 ∘ ) × cos ( 8 4 ∘ ) × ⋯ × cos ( 4 ∘ ) ]
Let C = cos ( 8 8 ∘ ) × cos ( 8 4 ∘ ) × ⋯ × cos ( 4 ∘ ) , then C > 0 because it is the product of all positive terms.
Consider the equation cos ( 9 0 x ) = 1 , then 9 0 x = n ⋅ 3 6 0 ∘ for integer n , which means that x = 4 ∘ , 8 ∘ , 1 2 ∘ , … , 3 6 0 ∘ satisfy the former equation.
Recall the properties of Chebyshev polynomials, the leading coefficient of polynomial cos ( 9 0 x ) in terms of cos ( x ) is 2 8 9 and because 9 0 is an even number not divisible by 4 , the constant of this same polynomial is equals to − 1 . Thus
1 0 = = = cos ( 9 0 x ) 2 8 9 cos 9 0 ( x ) − … − 1 2 8 9 cos 9 0 ( x ) − … − 2
By Vieta's formula, and apply these formulae: cos ( A ) = − cos ( 1 8 0 ∘ − A ) = − cos ( A − 1 8 0 ∘ ) = cos ( 3 6 0 ∘ − A ) , we get
cos ( 4 ∘ ) cos ( 8 ∘ ) cos ( 1 2 ∘ ) … cos ( 3 6 0 ∘ ) [ cos ( 4 ∘ ) cos ( 8 ∘ ) cos ( 1 2 ∘ ) … cos ( 8 8 ∘ ) ] 4 ⋅ cos ( 1 8 0 ∘ ) cos ( 3 6 0 ∘ ) C 4 ⋅ − 1 ⋅ 1 C = = = = − 2 8 9 2 − 2 8 8 1 − 2 8 8 1 2 2 2 1
Hence, putting it all together, the product equals to 2 − 2 2 . 5 ⋅ 2 − 2 2 = 2 − 4 4 . 5 = ( 2 1 ) 4 4 . 5 . Lastly, apply the log,
lo g 2 1 ( 2 1 ) 4 4 . 5 = 4 4 . 5 lo g 2 1 2 1 = 4 4 . 5
Good approach. That is the most direct way that I know of to prove the (generalized) statement about the product of sines / cosines.
Problem Loading...
Note Loading...
Set Loading...
⇒ lo g 2 1 ( sin ( 1 ∘ ) × sin ( 3 ∘ ) × sin ( 5 ∘ ) × sin ( 7 ∘ ) . . . . . . . . . . . . . . . sin ( 8 9 ∘ ) ) ⟹ lo g 2 1 ( sin ( 2 ∘ ) × sin ( 4 ∘ ) × sin ( 6 ∘ ) . . . . . . . . . . . . . . . . . . . . sin ( 8 8 ∘ ) sin ( 1 ∘ ) × sin ( 2 ∘ ) × sin ( 3 ∘ ) × sin ( 4 ∘ ) × sin ( 5 ∘ ) . . . . . . . . . . . . . . . sin ( 8 9 ∘ ) ) ⟹ lo g 2 1 ( 2 4 4 × sin ( 1 ∘ ) × cos ( 1 ∘ ) × sin ( 2 ∘ ) × cos ( 2 ∘ ) × sin ( 3 ∘ ) × cos ( 3 ∘ ) × . . . . . . . . . . . . . . . . . . . . sin ( 4 4 ∘ ) × cos ( 4 4 ∘ ) sin ( 1 ∘ ) × sin ( 2 ∘ ) × sin ( 3 ∘ ) . . . . . . . . . . . . . . . sin ( 8 9 ∘ ) ) [ ∵ sin ( 2 x ) = 2 sin ( x ) cos ( x ) ] ⟹ lo g 2 1 ( 2 4 4 × sin ( 1 ∘ ) × cos ( 1 ∘ ) × sin ( 2 ∘ ) × cos ( 2 ∘ ) × sin ( 3 ∘ ) × cos ( 3 ∘ ) × . . . . . . . . . . . . . . . . . . . . sin ( 4 4 ∘ ) × cos ( 4 4 ∘ ) sin ( 1 ∘ ) × sin ( 2 ∘ ) × sin ( 3 ∘ ) × sin ( 4 ∘ ) × sin ( 5 ∘ ) × sin ( 6 ∘ ) × sin ( 7 ∘ ) . . . . . . . . . . . . . . . cos ( 3 ∘ ) × cos ( 2 ∘ ) × cos ( 1 ∘ ) ) [ ∵ sin ( 9 0 − x ) = cos ( x ) ] ⟹ a l l t e r m s w o u l d c a n c e l e x c e p t → sin ( 4 5 ∘ ) ⟹ lo g 2 1 ( 2 4 4 sin ( 4 5 ∘ ) ) ⟹ lo g 2 1 ( 2 4 4 2 1 ) ⟹ lo g 2 1 ( 2 1 ) 4 4 . 5 = 4 4 . 5