Logarithm with algebra

Algebra Level 3

If log 12 18 = a \log_{12}{18}=a , what is log 24 16 \log_{24}{16} ?

8 4 a 5 + a \frac{8-4a}{5+a} 4 a 1 2 + 3 a \frac{4a-1}{2+3a} 1 3 + a \frac{1}{3+a} 8 4 a 5 a \frac{8-4a}{5-a}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 12 18 = a log 18 log 12 = a log 2 + 2 log 3 2 log 2 + log 3 = a 1 + 2 log 3 log 2 2 + log 3 log 2 = a Let b = log 3 log 2 1 + 2 b 2 + b = a 1 + 2 b = 2 a + a b 2 b a b 2 a 1 b = 2 a 1 2 a \begin{aligned} \log_{12} 18 & = a \\ \frac {\log 18}{\log 12} & = a \\ \frac {\log 2 + 2\log 3}{2\log 2+\log 3} & = a \\ \frac {1+2 \blue{\frac {\log 3}{\log 2}}}{2+\blue{\frac {\log 3}{\log 2}}} & = a & \small \blue{\text{Let }b = \frac {\log 3}{\log 2}} \\ \frac {1+2 \blue b}{2+\blue b} & = a \\ 1 + 2b & = 2a+ab \\ 2b-ab & 2a-1 \\ \implies b & = \frac {2a-1}{2-a} \end{aligned}

Now we have:

log 24 16 = log 16 log 24 = 4 log 2 3 log 2 + log 3 = 4 3 + log 3 log 2 = 4 3 + b = 4 3 + 2 a 1 2 a = 8 4 a 6 3 a + 2 a 1 = 8 4 a 5 a \begin{aligned} \log_{24} 16 & = \frac {\log 16}{\log 24} = \frac {4\log 2}{3\log 2+\log 3} = \frac 4{3+\frac {\log 3}{\log 2}} \\ & = \frac 4{3+b} = \frac 4{3+\frac {2a-1}{2-a}} = \frac {8-4a}{6-3a+2a-1} \\ & = \boxed{\frac {8-4a}{5-a}} \end{aligned}

Great substitution as (b). Upvoted!

Mahdi Raza - 1 year, 1 month ago

Log in to reply

Yes, it would be easier to see.

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...