Logarithmic AP

Calculus Level 3

If log 3 2 , log 3 ( 2 x 5 ) a n d log 3 ( 2 x 7 2 ) \log _{ 3 }{ 2 } ,\log _{ 3 }{ ({ 2 }^{ x } } -5)\quad and\quad \log _{ 3 }{ ({ 2 }^{ x }-\frac { 7 }{ 2 } ) } are in AP, find x x


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tarun Singh
Mar 20, 2015

2 l o g 3 ( 2 x 5 ) = l o g 3 2 + l o g 3 ( 2 x 7 2 ) 2 l o g 3 ( 2 x 5 ) = l o g 3 ( 2 ( 2 x 7 2 ) ) L e t , y = 2 x l o g 3 ( y 5 ) 2 = l o g 3 ( 2 y 7 ) y 2 + 25 10 y = 2 y 7 y 2 12 y + 32 = 0 y = 8 , 4 2log_{3}{(2^x-5)} = log_{3}{2}+log_{3}{(2^x-\frac{7}{2})} \\ 2log_{3}{(2^x-5)} = log_{3}(2*(2^x-\frac{7}{2})) \\ Let, \quad y=2^x \\ log_{3}({y-5})^2 = log_{3}(2y-7)\\ y^2+25-10y=2y-7\\ y^2-12y + 32=0\\ y=8,4
Therefore, x = 3 x=3 or 2 2
As x = 2 x=2 will result in l o g 3 ( 4 5 ) log_{3}{(4-5)} = l o g 3 ( 1 ) log_{3}{(-1)}
Therefore, x = 3 x=3


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...