Find the integral above to 4 decimal places. You may use a calculator for the final calculation of the definite integral.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Catalan's constant
I = ∫ 1 4 π ln ( tan x ) d x = ∫ tan 1 1 u 2 + 1 ln u d u = ∫ tan 1 1 ( u + i ) ( u − i ) ln u d u = 2 i ( ∫ tan 1 1 u + i ln u d u − ∫ tan 1 1 u − i ln u d u ) = 2 i ( ∫ tan 1 + i 1 + i v ln ( v − i ) d v − ∫ tan 1 − i 1 − i v ln ( v + i ) d v ) = 2 i ( ∫ tan 1 + i 1 + i v ln ( i v + 1 ) d v − ∫ tan 1 + i 1 + i v ln i d v − ∫ tan 1 − i 1 − i v ln ( 1 − i v ) d v − ∫ tan 1 − i 1 − i v ln i d v ) = 2 i ( ∫ 1 − i tan 1 1 − i w ln ( 1 − w ) d w − ln i ln v ∣ ∣ ∣ ∣ tan 1 + i 1 + i − ∫ 1 + i tan 1 1 + i w ln ( 1 − w ) d w − ln i ln v ∣ ∣ ∣ ∣ tan 1 − i 1 − i ) = 2 i ( − Li 2 ( w ) ∣ ∣ ∣ ∣ 1 − i tan 1 1 − i − 2 π i ln tan 1 + i 1 + i + Li 2 ( w ) ∣ ∣ ∣ ∣ 1 + i tan 1 1 + i − 2 π i ln tan 1 − i 1 − i ) = 2 i ( − Li 2 ( 1 − i ) + Li 2 ( 1 − i tan 1 ) + Li 2 ( 1 + i ) − Li 2 ( 1 + i tan 1 ) + 2 π i ln 2 tan 2 1 + 1 ) = 2 i ( 2 i G + 2 π i ln 2 − 3 . 6 7 2 4 1 i + 2 π i ln 2 tan 2 1 + 1 ) = − G + 2 3 . 6 7 2 4 1 − 4 π ln ( tan 2 1 + 1 ) = − 0 . 0 4 6 7 8 Let u = tan x ⟹ d u = sec 2 x d x Let v = u ± i ⟹ d u − d v Let w = ∓ i v ⟹ d w = ∓ i d v where Li 2 ( z ) is the dilogarithm function. where G ≈ 0 . 9 1 5 9 6 5 6 is the Catalan’s constant.