Logarithmic Dilemma

Calculus Level 5

1 π 4 ln ( tan x ) d x \large \int_1^\frac \pi 4 \ln (\tan x) \ dx

Find the integral above to 4 decimal places. You may use a calculator for the final calculation of the definite integral.


The answer is -0.04678.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 25, 2017

Relevant wiki: Catalan's constant

I = 1 π 4 ln ( tan x ) d x Let u = tan x d u = sec 2 x d x = tan 1 1 ln u u 2 + 1 d u = tan 1 1 ln u ( u + i ) ( u i ) d u = i 2 ( tan 1 1 ln u u + i d u tan 1 1 ln u u i d u ) Let v = u ± i d u d v = i 2 ( tan 1 + i 1 + i ln ( v i ) v d v tan 1 i 1 i ln ( v + i ) v d v ) = i 2 ( tan 1 + i 1 + i ln ( i v + 1 ) v d v tan 1 + i 1 + i ln i v d v tan 1 i 1 i ln ( 1 i v ) v d v tan 1 i 1 i ln i v d v ) Let w = i v d w = i d v = i 2 ( 1 i tan 1 1 i ln ( 1 w ) w d w ln i ln v tan 1 + i 1 + i 1 + i tan 1 1 + i ln ( 1 w ) w d w ln i ln v tan 1 i 1 i ) = i 2 ( Li 2 ( w ) 1 i tan 1 1 i π i 2 ln 1 + i tan 1 + i + Li 2 ( w ) 1 + i tan 1 1 + i π i 2 ln 1 i tan 1 i ) where Li 2 ( z ) is the dilogarithm function. = i 2 ( Li 2 ( 1 i ) + Li 2 ( 1 i tan 1 ) + Li 2 ( 1 + i ) Li 2 ( 1 + i tan 1 ) + π i 2 ln tan 2 1 + 1 2 ) = i 2 ( 2 i G + π i 2 ln 2 3.67241 i + π i 2 ln tan 2 1 + 1 2 ) where G 0.9159656 is the Catalan’s constant. = G + 3.67241 2 π 4 ln ( tan 2 1 + 1 ) = 0.04678 \begin{aligned} I & = \int_1^\frac \pi 4 \ln (\tan x) \ dx & \small \color{#3D99F6} \text{Let }u = \tan x \implies du = \sec^2 x \ dx \\ & = \int_{\tan 1}^1 \frac {\ln u}{u^2+1} \ du \\ & = \int_{\tan 1}^1 \frac {\ln u}{(u+i)(u-i)} du \\ & = \frac i2 \left(\int_{\tan 1}^1 \frac {\ln u}{u+i} du - \int_{\tan 1}^1 \frac {\ln u}{u-i} du \right) & \small \color{#3D99F6} \text{Let }v = u \pm i \implies du - dv \\ & = \frac i2 \left(\int_{\tan 1+i}^{1+i} \frac {\ln (v-i)}v dv - \int_{\tan 1-i}^{1-i} \frac {\ln (v+i)}v dv\right) \\ & = \frac i2 \left(\int_{\tan 1+i}^{1+i} \frac {\ln (iv+1)}v dv - \int_{\tan 1+i}^{1+i} \frac {\ln i}v dv - \int_{\tan 1-i}^{1-i} \frac {\ln (1-iv)}v dv - \int_{\tan 1-i}^{1-i} \frac {\ln i}v dv \right) & \small \color{#3D99F6} \text{Let }w = \mp iv \implies dw = \mp i \ dv \\ & = \frac i2 \left(\int_{1-i\tan 1}^{1-i} \frac {\ln (1-w)}w dw - \ln i \ln v \bigg|_{\tan 1+i}^{1+i} - \int_{1+i\tan 1}^{1+i} \frac {\ln (1-w)}w dw - \ln i \ln v \bigg|_{\tan 1-i}^{1-i} \right) \\ & = \frac i2 \left(- \text{Li}_2 (w) \bigg|_{1-i\tan 1}^{1-i} - \frac {\pi i} 2 \ln \frac {1+i}{\tan 1+i} + \text{Li}_2 (w) \bigg|_{1+i\tan 1}^{1+i} - \frac {\pi i} 2 \ln \frac {1-i}{\tan 1-i} \right) & \small \color{#3D99F6} \text{where } \text{Li}_2 (z) \text{ is the dilogarithm function.} \\ & = \frac i2 \left({\color{#3D99F6}- \text{Li}_2 (1-i)} + {\color{#D61F06}\text{Li}_2 (1-i\tan 1)} + {\color{#3D99F6}\text{Li}_2 (1+i)} - {\color{#D61F06}\text{Li}_2 (1+i\tan 1)} + \frac {\pi i} 2 \ln \frac {\tan^2 1 + 1}2 \right) \\ & = \frac i2 \left({\color{#3D99F6}2iG + \frac {\pi i}2\ln 2} - {\color{#D61F06}3.67241i} + \frac {\pi i} 2 \ln \frac {\tan^2 1 + 1}2 \right) & \small \color{#3D99F6} \text{where }G \approx 0.9159656 \text{ is the Catalan's constant.} \\ & = -G + \frac {3.67241}2 - \frac \pi 4 \ln (\tan^2 1 + 1) \\ & = \boxed{-0.04678} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...